ChemicalBook > Product Catalog >Biochemical Engineering >Saccharides >Monosaccharide >Saccharin

Saccharin

Saccharin Suppliers list
Company Name: Hebei Jingbo New Material Technology Co., Ltd
Tel: +8619931165850
Email: hbjbtech@163.com
Products Intro: Product Name:Saccharin
CAS:81-07-2
Purity:99% Package:25kg;8USD
Company Name: Wuhan Fortuna Chemical Co., Ltd
Tel: +86-27-59207850 +86-13986145403
Email: info@fortunachem.com
Products Intro: Product Name:Insoluble Saccharin
CAS:81-07-2
Purity:98% Package:1kg;35USD|25kg;12USD|1000kg;7.5USD
Company Name: Henan Fengda Chemical Co., Ltd
Tel: +86-371-86557731 +86-13613820652
Email: info@fdachem.com
Products Intro: Product Name:Saccharin
CAS:81-07-2
Purity:99% Package:1kg;8USD|100kg;7USD|1000kg;6USD
Company Name: airuikechemical co., ltd.
Tel: +undefined86-15315557071
Email: sales02@airuikechemical.com
Products Intro: Product Name:Saccharin
CAS:81-07-2
Purity:99.9% Package:1Kg;0.00;USD|5Kg;0.00;USD|25Kg;0.00;USD
Company Name: Hebei Saisier Technology Co., LTD
Tel: +86-18400010335 +86-13102810335
Email: admin@hbsaisier.cn
Products Intro: Product Name:Saccharin
CAS:81-07-2
Purity:More than 99% Package:1KG;6USD

Saccharin manufacturers

  • Saccharin
  • Saccharin pictures
  • $8.00 / 1kg
  • 2024-04-23
  • CAS:81-07-2
  • Min. Order: 1kg
  • Purity: 99%
  • Supply Ability: g-kg-tons, free sample is available
  • Saccharin
  • Saccharin pictures
  • $6.00 / 1KG
  • 2024-04-22
  • CAS:81-07-2
  • Min. Order: 1KG
  • Purity: More than 99%
  • Supply Ability: 2000KG/MONTH
  • Insoluble Saccharin
  • Insoluble Saccharin pictures
  • $35.00 / 1kg
  • 2024-04-08
  • CAS:81-07-2
  • Min. Order: 1kg
  • Purity: 98%
  • Supply Ability: 20MT
Saccharin Basic information
Description History Properties Safety and Health Effects
Product Name:Saccharin
Synonyms:Benzisosulfonazole, 2,3-dihydro-3-oxo-;Benzo-2-sulfiide;Benzo-2-sulphimide;Benzoic sulfimide;benzoicsulfimide;Benzosulfinide;Benzosulphimide;Benzo-sulphinide
CAS:81-07-2
MF:C7H5NO3S
MW:183.18
EINECS:201-321-0
Product Categories:GARANTOSE;Sulfur;Aromatics;Heterocycles;Intermediates & Fine Chemicals;Pharmaceuticals;Sulfur & Selenium Compounds;food additives
Mol File:81-07-2.mol
Saccharin Structure
Saccharin Chemical Properties
Melting point 226-229 °C (lit.)
Boiling point subl
density 0.828
vapor pressure 0Pa at 25℃
refractive index 1.5500 (estimate)
storage temp. Store below +30°C.
solubility acetone: soluble1g in 12mL(lit.)
pka11.68(at 18℃)
form Crystals or Crystalline Powder
color White
Odorodorless
Water Solubility 3.3 g/L (20 ºC)
Merck 14,8311
BRN 6888
Stability:Stable. Incompatible with strong oxidizing agents.
InChIKeyCVHZOJJKTDOEJC-UHFFFAOYSA-N
LogP-0.024 at 25℃
CAS DataBase Reference81-07-2(CAS DataBase Reference)
IARC3 (Vol. Sup 7, 73) 1999
NIST Chemistry ReferenceSaccharin(81-07-2)
EPA Substance Registry SystemSaccharin (81-07-2)
Safety Information
Risk Statements 40-62-63-68
Safety Statements 24/25
RIDADR UN 3077 9/PG 3
WGK Germany 2
RTECS DE4200000
TSCA Yes
HazardClass IRRITANT
HS Code 29251100
Hazardous Substances Data81-07-2(Hazardous Substances Data)
ToxicityLD50 oral in mouse: 17gm/kg
MSDS Information
ProviderLanguage
1,2-Benzisothiazol-3(2H)-one 1,1-dioxide English
SigmaAldrich English
ACROS English
ALFA English
Saccharin Usage And Synthesis
DescriptionSaccharin is an organic compound that is normally used as a non-nutritive sweetening agent. Also known as ortho-sulfobenzoic acid imide, saccharin occurs in the form of various salts, mainly calcium and sodium.
HistorySaccharin was discovered in 1879 by chemists Constantin Fahlberg and Ira Remsen as they were researching about the oxidation of o-toluenesulfonamide. While eating, Fahlberg noticed the presence of sweetness in his food due to his arms and hands that contained saccharin. As he checked his laboratory apparatus by taste tests, Fahlberg found out that the source of this sweetness was from saccharin. Saccharin is still made of toluenesulfonamide and from phthalic anhydride.
PropertiesSaccharin is stable when heated and does not chemically react with other food ingredients, therefore, it stores well. When blended with other sweeteners, saccharin often compensates for each sweetener’s faults and weakness. Commonly, saccharin is used with aspartate in diet carbonated soft drinks.
Saccharin is insoluble in water in its acid form. Its majorly used form as an artificial sweetener is its sodium salt.
Safety and Health EffectsThe utilization of saccharin in human food has raised numerous health and safety concerns. In the 1970s, saccharin was linked with the development of bladder in rodents in various laboratory studies on rats. Consequently, the United States Food and Drug Administration (FDA) pushed for its ban, sighting that it is carcinogenic to humans.
However, after strong objection from the public regarding the ban, American Congress intervened and allowed the compound to remain in the food supply as long as all the manufactures libel it with a warning when packaging.
Saccharin gas been classified to have no nutritional or food energy value, as such, it safe for patients with diabetes.
Chemical PropertiesSaccharin is a crystalline solid with a sweet taste (500 times sweeter than sugar).
Chemical Propertieswhite crystalline solid
Chemical PropertiesSaccharin occurs as odorless white crystals or a white crystalline powder. It has an intensely sweet taste, with a metallic or bitter aftertaste that at normal levels of use can be detected by approximately 25% of the population. The aftertaste can be masked by blending saccharin with other sweeteners.
HistorySaccharin is the oldest and one of the best-known artificial sweeteners. It was accidentally discovered in 1878 by Ira Remsen (1846 1927) and his postdoctoral research fellow Constantin Fahlberg (1850 1910) at Johns Hopkins University when he was working on toluene derivatives from coal tar. He traced the taste back to the oxidized sulfonated chemicals he was working with and determined it was a sulfonated amide benzoic acid compound. Remsen and Fahlberg jointly published their findings on the compound in 1879 and 1880 in American and German journals. During the next several years, Remsen continued his academic work as one of the world's leading chemists, and Fahlberg perfected methods for commercialization of saccharin. Fours year after they published their work, Fahlberg and his uncle, Adolf List, applied for a United States patent for the compound, which was granted in 1885 (U.S. patent number 319082).
Saccharin was first introduced to the public in 1885. It was initially promoted as an antiseptic and food preservative. The use of saccharin as a sweetener started around 1900 when it was marketed for use by people with diabetes. Because saccharin was a cheap sugar substitute, it was viewed as a threat to the sugar industry. Sugar manufacturers in Europe, Canada, and the United States lobbied for laws restricting saccharin’s use. Calls to regulate saccharin in foods have been present throughout its history. Early in the 20th century, the political climate promoted legislation and government oversight to ensure that food was safe. In 1906, the passage of the Federal Food and Drug Act gave government regulatory authority concerning the safety of food. The Department of Agriculture’s Bureau of Chemistry, the predecessor of the Food and Drug Administration (FDA), performed research and made recommendations with respect to food additives. In 1907, a study by the newly created Board of Food and Drug Inspection made claims (latter refuted) that saccharin damaged the kidneys and other organs. The leader of the Bureau of Chemistry, Harvey W. Wiley (1844–1930), was a member of the Board and held the view that saccharin (and other chemicals such as benzoates) was dangerous.
Approximately 30,000 tons per year of saccharin and saccharin salts are used globally each year, with about 5,000 tons of this used in the United States. Questions on saccharin’s safety has followed its usage to the present day. Saccharin is banned in Canada (except in special cases), several European countries, and many other countries. Countries where it is legal place restrictions on its use. Saccharin has been regulated in the United States since the beginning of the century. A Canadian study in 1977 that reported saccharin Legislation, signed into law on December 21, 2000, repealed the warning label requirement for products containing saccharin. The National Cancer Institute’s position is that there is no clear evidence linking saccharin to cancer in humans.
UsesSaccharin is a non-nutritive synthetic sweetener which is 300–400 times sweeter than sucrose. it is nonhygroscopic and has a bitter aftertaste and a stability problem in cooked, canned, or baked goods. it is slightly soluble in water with a solubility of 10 g in 100 g of water at 25°c, but the solubility improves in boiling water. as sodium saccharin, there are two forms: 1,2-benzisothiazolin-3-one- 1,1-dioxide, sodium salt dihydrate, with a solubility of 1 g in 1.2 ml of water; and 1,2-benzisothiazolin-3-one-1,1-dioxide, sodium salt. calcium saccharin (chemical name: 1,2-benzisothiazolin-3-one-1, 1-dioxide, calcium salt) is used where low sodium content and reduced after-taste are required. it is used in low-calorie foods such as jam, beverages, and desserts. it is also termed sodium benzosulfimide.
UsesIt is a non-nutritive sweetener; pharmaceutic aid (flavor). Saccharin was formerly listed as reasonably anticipated to be a human carcinogen; delisted because the cancer data are not sufficient to meet the current criteria for this listing.
UsesUsually used in high performance liquid chromatographic method for the simultaneous separation and determination of acesulfame potassium, saccharine and aspartame;and also used in sweet preference test of rats.
DefinitionChEBI: A 1,2-benzisothiazole having a keto-group at the 3-position and two oxo substituents at the 1-position. It is used as an artificial sweetening agent.
DefinitionA white crystalline organic compound used as an artificial sweetener; it is about 550 times as sweet as sugar (sucrose). It is nearly insoluble in water and so generally used in the form of its sodium salt. Possible links with cancer in animals has restricted its use in some countries.
Definitionsaccharin: A white crystalline solid,C7H5NO3S, m.p. 224°C. It is madefrom a compound of toluene, derivedfrom petroleum or coal tar. It is awell-known artificial sweetener,being some 500 times as sweet assugar (sucrose), and is usually marketedas its sodium salt. Because ofan association with cancer in laboratoryanimals, its use is restricted insome countries.
PreparationSaccharin is synthesized using two methods: the Remsen-Fahlberg process and the Maumee or Sherwin-Williams method. The Remsen-Fahlberg synthesis of saccharin starts by reacting toluene with chlorosulfonic acid to give ortho and para forms of toluene-sulfonic acid (Figure 78.1). The acid can be converted to sulfonyl chlorides by treating with phosphorus pentachloride. The ortho form, o-toluene-sulfonyl chloride, is treated with ammonia to give o-toluene-sulfonamide, which is then oxidized with potassium permanganate to produce o-sulfamido-benzoic acid. On heating, the latter yields saccharin. Another synthesis was developed at Maumee Chemical Company in Toledo, Ohio, and it came to be known as the Maumee process. This process starts with phthalic anhydride, which is converted into anthranilic acid. Anthranilic acid is then reacted with nitrous acid, sulfur dioxide, chlorine, and ammonia to give saccharin. The Maumee process was further refi ned by the Sherwin-Williams Company and is therefore now referred to as the Sherwin-Williams process.
Production MethodsSaccharin is prepared from toluene by a series of reactions known as the Remsen–Fahlberg method. Toluene is first reacted with chlorosulfonic acid to form o-toluenesulfonyl chloride, which is reacted with ammonia to form the sulfonamide. The methyl group is then oxidized with dichromate, yielding o-sulfamoylbenzoic acid, which forms the cyclic imide saccharin when heated.
An alternative method involves a refined version of the Maumee process. Methyl anthranilate is initially diazotized to form 2- carbomethoxybenzenediazonium chloride; sulfonation followed by oxidation then yields 2-carbomethoxybenzenesulfonyl chloride. Amidation of this material, followed by acidification, forms insoluble acid saccharin.
Brand nameSweeta (Bristol-Myers Squibb).
General DescriptionWhite crystals. Odorless or faintly aromatic odor. Sweet taste.
Air & Water ReactionsSlightly soluble in water.
Reactivity ProfileAn amide. Acid to litmus. pH of 0.35% aqueous solution: 2.0. Organic amides/imides react with azo and diazo compounds to generate toxic gases. Flammable gases are formed by the reaction of organic amides/imides with strong reducing agents. Amides are very weak bases (weaker than water). Imides are less basic yet and in fact react with strong bases to form salts. That is, they can react as acids. Mixing amides with dehydrating agents such as P2O5 or SOCl2 generates the corresponding nitrile. The combustion of these compounds generates mixed oxides of nitrogen (NOx).
HazardA questionable carcinogen. Products con- taining it must have a warning label.
Fire HazardFlash point data for Saccharin are not available; however, Saccharin is probably combustible.
Flammability and ExplosibilityNon flammable
Pharmaceutical ApplicationsSaccharin is an intense sweetening agent used in beverages, food products, table-top sweeteners, and oral hygiene products such as toothpastes and mouthwashes. In oral pharmaceutical formulations, it is used at a concentration of 0.02–0.5% w/w. It has been used in chewable tablet formulations as a sweetening agent.
Saccharin has been used to form various pharmaceutical cocrystals. Saccharin can be used to mask some unpleasant taste characteristics or to enhance flavor systems. Its sweetening power is approximately 300–600 times that of sucrose.
Biochem/physiol ActionsA sweet tastant for mammals. A glycerol taste receptor binding site specific for glucose has been proposed in drosophila.
Safety ProfileConfirmed carcinogen withexperimental neoplastigenic and tumorigenic data. Mildacute toxicity by ingestion. Experimental teratogenic andreproductive effects. Mutation data reported. Whenheated to decomposition it emits toxic NOx and SOx.
SafetyThere has been considerable controversy concerning the safety of saccharin, which has led to extensive studies since the mid-1970s. Two-generation studies in rats exposed to diets containing 5.0–7.5% total saccharin (equivalent to 175 g daily in humans) suggested that the incidence of bladder tumors was significantly greater in saccharin-treated males of the second generation than in controls. Further experiments in rats suggested that a contaminant of commercial saccharin, o-toluene sulfonamide, might also account for carcinogenic effects. In view of these studies, a ban on the use of saccharin was proposed in several countries. However, in 1977 a ban by the FDA led to a Congressional moratorium that permitted the continued use of saccharin in the USA.
From the available data it now appears that the development of tumors is a sex-, species-, and organ-specific phenomenon, and extensive epidemiological studies have shown that saccharin intake is not related to bladder cancer in humans.
The WHO has set a temporary acceptable daily intake for saccharin, including its calcium, potassium, and sodium salts, at up to 2.5 mg/kg body-weight. In the UK, the Committee on Toxicity of Chemicals in Food, Consumer Products, and the Environment (COT) has set an acceptable daily intake for saccharin and its calcium, potassium, and sodium salts (expressed as saccharin sodium) at up to 5 mg/kg body-weight.
Adverse reactions to saccharin, although relatively few in relation to its widespread use, include: urticaria with pruritus following ingestion of saccharin-sweetened beverages and photosensitization reactions.
LD50 (mouse, oral): 17.5 g/kg
LD50 (rat, IP): 7.10 g/kg
LD50 (rat, oral): 14.2 g/kg
Potential ExposureThe information provided has to do, primarily, with the manufacturing of saccharin. Saccharin has been used as a nonnutritive sweetening agent. At one point the United States consumption pattern for all forms of saccharin has been estimated as 45% in soft drinks; 18% in tabletop sweeteners; 14% in fruits, juices, sweets, chew- ing gum, and jellies; 10% in cosmetics and oral hygiene products; 7% in drugs, such as coating on pills; 2% in tobacco; 2% in electroplating; and 2% for miscellaneous uses. Human exposure to saccharin occurs primarily through ingestion because of its use in many dietic foods and drinks and some personal hygiene products, including toothpastes and mouthwashes. The general public is exposed to saccharin, especially by persons required to reduce sugar intake.
storageSaccharin is stable under the normal range of conditions employed in formulations. In the bulk form it shows no detectable decomposition and only when it is exposed to a high temperature (125°C) at a low pH (pH 2) for over 1 hour does significant decomposition occur. The decomposition product formed is (ammonium-o-sulfo)benzoic acid, which is not sweet. The aqueous stability of saccharin is excellent.
Saccharin should be stored in a well-closed container in a dry place.
ShippingUN3077 Environmentally hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9-Miscellaneous haz- ardous material, Technical Name Required.
Purification MethodsPurify saccharin by recrystallisation from Me2CO [solubility 7.14% at 0o, 14.4% at 50o], or aqueous isoPrOH to give a fluorescent solution. It sublimes in vacuo. It is an artificial sweetner and is 500 times sweeter than sucrose. [DeGarmo et al. J Am Pharm Assoc (Sci Ed) 41 17 1952, Beilstein 27 H 168, 870, 27 I 266, 27 II 214, 27 III/IV 2649.]
IncompatibilitiesSaccharin can react with large molecules, resulting in a precipitate being formed. It does not undergo Maillard browning.
IncompatibilitiesDust may form explosive mixture with air. Incompatible with strong oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, and epoxides.
Waste DisposalConsult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contami- nant (≥100 kg/mo) must conform to EPA regulations governing storage, transportation, treatment, and waste disposal.
Regulatory StatusAccepted for use as a food additive in Europe. Note that the EU number ‘E954’ is applied to both saccharin and saccharin salts. Included in the FDA Inactive Ingredients Database (oral solutions, syrups, tablets, and topical preparations). Included in nonparenteral medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.
Tag:Saccharin(81-07-2) Related Product Information
2-Benzoylbenzoic acid Quartz Phenylmethylsulfonyl fluoride Rutile Sulfurous Acid Carbon dioxide Thiourea dioxide Potassium phthalimide Zirconium dioxide O-Phthalimide N,N'-1,3-Phenylene bismaleimide Chlorine dioxide Phthalhydrazide Saccharin sodium 98.0+,SACCHARIN SODIUM SALT DIHYDRATE,SACCHARIN SODIUM, DIHYDRATE Glycerol Sucralose 6-Nitro-1,2-benzisothiazolin-3-one 1,1-dioxide 2,3-Dihydro-3-oxobenzisosulfonazole, o-Sulfobenzimide, Saccharin hemicalcium salt,Saccharin hemicalcium salt,CALCIUM SACCHARIN HYDRATE Saccharine