1,1,2,2-テトラクロロエタン(79-34-5)

ChemicalBook Optimization Suppliers
名前: Shanghai Aladdin Bio-Chem Technology Co.,LTD  Gold
電話番号: 400-6206333 18521732826;
電子メール: market@aladdin-e.com
名前: Guangzhou Yunmen Biotechnology Co., Ltd  Gold
電話番号: 18902340307 18902340307
電子メール: 3356812514@qq.com
名前: Shandong Baiyang Biotechnology Co., Ltd  Gold
電話番号: 0533-13505335043 13505335043
電子メール: baiyangshengwu@163.com
名前: JIANGSU BSECHEM CHEMICAL TECHNOLOGY Co., Ltd  Gold
電話番号: 15651337098
電子メール: 15651337098@163.com
名前: Meryer (Shanghai) Chemical Technology Co., Ltd.  
電話番号: 4006608290; 18621169109
電子メール: market03@meryer.com
1,1,2,2-テトラクロロエタン 製品概要
化学名:1,1,2,2-テトラクロロエタン
英語化学名:1,1,2,2-Tetrachloroethane
别名:(CHCl2)2;1,1,2,2,-tetrachlor-ethane;1,1,2,2-Czterochloroetan;1,1,2,2-czterochloroetan(polish);1,1,2,2-Tetrachloorethaan;1,1,2,2-Tetrachloraethan;1,1,2,2-Tetrachlorethane;1,1,2,2-tetrachlorethane(french)
CAS番号:79-34-5
分子式:C2H2Cl4
分子量:167.85
EINECS:201-197-8
カテゴリ情報:ACS and Reagent Grade Solvents;Amber Glass Bottles;Reagent;Reagent Grade Solvents;Solvent Bottles;Solvent by Application;Solvent Packaging Options;Solvents;Analytical Chemistry;Standard Solution of Volatile Organic Compounds for Water & Soil Analysis;Standard Solutions (VOC);Alpha Sort;Chemical Class;ChloroPesticides;FumigantsVolatiles/ Semivolatiles;Halogenated;Insecticides;TA - TE;T-ZAlphabetic;refrigerants;Organics;Intermediates of Dyes and Pigments;Solvent;79-34-5
Mol File:79-34-5.mol
1,1,2,2-テトラクロロエタン
1,1,2,2-テトラクロロエタン 物理性質
融点 -43 °C
沸点 147 °C(lit.)
比重(密度) 1.586 g/mL at 25 °C(lit.)
蒸気密度5.8 (vs air)
蒸気圧8 mm Hg ( 20 °C)
屈折率 n20/D 1.494(lit.)
闪点 142-146°C
貯蔵温度 Store below +30°C.
溶解性2830g/l
外見 Liquid
slightly green-yellow
水溶解度 0.3 g/100 mL (25 ºC)
Merck 14,9189
BRN 969206
Henry's Law Constant6.22 at 30 °C (headspace-GC, Sanz et al., 1997)
暴露限界値Potential occupational carcinogen. NIOSH REL: TWA 1 ppm (7 mg/m3), IDLH 100 ppm; OSHA PEL: TWA 5 ppm (35 mg/m3); ACGIH TLV: TWA 1 ppm (adopted).
Dielectric constant8.4199999999999999
安定性:Stable. Incompatible with strong oxidizing agents, strong bases. Reacts violently with sodium, potassium, nitrates, 2,4-dinitrophenyl disulphide.
CAS データベース79-34-5(CAS DataBase Reference)
NISTの化学物質情報Ethane, 1,1,2,2-tetrachloro-(79-34-5)
IARC2B (Vol. 20, Sup 7, 71, 106) 2014
EPAの化学物質情報1,1,2,2-Tetrachloroethane (79-34-5)
安全性情報
主な危険性 T+,N,T,F
Rフレーズ 26/27-51/53-59-39/23/24/25-23/24/25-11
Sフレーズ 38-45-61-36/37-16-7
RIDADR UN 1702 6.1/PG 2
WGK Germany 3
RTECS 番号KI8575000
TSCA Yes
HSコード 2903 19 00
国連危険物分類 6.1
容器等級 II
有毒物質データの79-34-5(Hazardous Substances Data)
毒性LD50 orally in rats: 0.20 ml/kg (Smyth)
IDLA100 ppm
MSDS Information
ProviderLanguage
ACROS English
SigmaAldrich English
ALFA English
1,1,2,2-テトラクロロエタン Usage And Synthesis
外観無色~ほとんど無色, 澄明の液体
溶解性水に微溶 (0.32g/100ml水, 25℃), アルコール, エーテル等各種有機溶剤と混和。エタノール及びジエチルエーテルに極めて溶けやすく、水に溶けにくい。
解説

C2H2Cl4(167.86).【Ⅰ】sym-あるいは1,1,2,2-テトラクロロエタンCHCl2CHCl2は,アセチレンと塩素を触媒の存在下に反応させると得られる.クロロホルム様の臭気をもつ液体.融点-36 ℃,沸点146.2 ℃.d251.5881.n15D 1.49678.不燃性で,油脂,ろう,ゴムなどの溶剤および抽出剤として用いられる.蒸気は麻酔作用をもつ.【Ⅱ】unsym-または1,1,1,2-テトラクロロエタンCH2ClCCl3は,塩化ビニリデンに塩素を付加させると得られる.融点-68 ℃,沸点129 ℃.d201.553.n20D1.4821.森北出版「化学辞典(第2版)

用途溶剤、(油脂ゴム等の)抽出剤
用途本物質は揮発性の合成化学物質であり、他の塩素化炭化水素合成の中間体として使用される。
説明1,1,2,2-Tetrachloroethane (tetrachloroethane) is a volatile, synthetic, colorless to pale-yellow dense liquid with a pungent, chloroform-like odor that is soluble in water and most organic solvents. There are no known natural sources of tetrachloroethane. Tetrachloroethane is a chemical intermediate in the production of a variety of other common chemicals. In the past, the major use for tetrachloroethane was in the production of trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene. With the development of new processes for manufacturing chlorinated ethylenes and the availability of less-toxic solvents, the production of tetrachloroethane as a commercial endproduct in the United States and Canada has steadily declined since the late 1960s and the production ceased by the early 1990s. Although at one time it was used as an insecticide, fumigant, and weed killer, it presently is not registered for any of these purposes. Its registration as an insect repellent was canceled by the Environmental Protection Agency (EPA) in the late 1970s.
化学的特性Tetrachloroethane is a heavy, volatile colorless to light yellow liquid. It has a sweetish, chloroform-like odor. The Odor Threshold is 0.5 ppm in water and 1.5 ppm in air.
化学的特性colourless to light yellow liquid with a chloroform-like
物理的性質Colorless to pale yellow liquid with a sweet, chloroform-like odor. A detection odor threshold concentration of 50 mg/m3 (7.3 ppmv) was experimentally determined by Dravnieks (1974).
使用Intermediate in the production of trichloroethylene, tetrachloroethylene, and 1,2-dichloroethylene; previously used as a solvent, insecticide and fumigant.
使用1,1,2,2-Tetrachloroethane, once used as a solvent for cleaning and extraction processes, is still used to some extent as a chemical intermediate. Present usage is quite limited because less toxic solvents are available.
使用Nonflammable solvent for fats, oils, waxes, resins, cellulose acetate, rubber, copal, phosphorus, sulfur. As solvent in certain types of Friedel-Crafts reactions or phthalic anhydride condensations. In the manufacture of paint, varnish, and rust removers. In soil sterilization and weed killer and insecticide formulations. In the determination of theobromine in cacao. As immersion fluid in crystallography. In the biological laboratory to produce pathological changes in gastrointestinal tract, liver, and kidneys. Intermediate in the manufacture of trichloroethylene and other chlorinated hydrocarbons having two carbon atoms.
定義ChEBI: A member of the class of chloroethanes that is ethane substituted by chloro groups at positions 1, 1, 2 and 2.
一般的な説明Colorless to pale yellow liquid with a sweet odor. Sinks in water.
空気と水の反応Insoluble in water.
反応プロフィール1,1,2,2-Tetrachloroethane may be incompatible with strong oxidizing and reducing agents. Also may be incompatible with many amines, nitrides, azo/diazo compounds, alkali metals, and epoxides. Decomposed by heat and UV light, forming phosgene and HCl; reacts violently with finely dispersed metals [Handling Chemicals Safely 1980. p. 886].
危険性Toxic by ingestion, inhalation, skin absorption. Questionable carcinogen.
健康ハザードCompound is a powerful narcotic and liver poison; may also cause changes in blood composition and neurological disturbances. Repeated exposure by inhalation can be fatal. Ingestion causes vomiting, diarrhea, severe mucosal injury, liver necrosis, cyanosis, unconsciousness, loss of reflexes, and death. Contact with eyes causes irritation and lachrymation. Can be absorbed through the skin and may produce severe skin lesions.
火災危険Special Hazards of Combustion Products: Irritating hydrogen chloride vapor may form in fire.
安全性プロファイルSuspected carcinogen with experimental carcinogenic and tumorigenic data. Poison by inhalation, ingestion, and intraperitoneal routes. Moderately toxic by several other routes. Mutation data reported. Human central nervous system effects by ingestion and inhalation: general anesthesia, somnolence, hallucinations, and distorted perceptions. Considered the most toxic of the common chlorinated hydrocarbons. Considered to be a very severe industrial hazard and its use has been restricted or even forbidden in certain countries. It is not an inert solvent. Reacts violently with N2O4,2,4dinitrophenyl disulfide, and on contact with sodium or potassium. When heated in contact with solid potassium hydroxide, spontaneously flammable chloroor dichloroacetylene gas is evolved. Any water can cause appreciable hydrolysis, even at room temperature, and both hydrolysis and oxidation become comparatively rapid above 110'. When heated to decomposition it emits toxic fumes of Cl-. A strong irritant of eyes and mucous membranes. A concentration of 3 ppm produces a detectable odor, thus an initial produces a detectable odor, thus an initial warning effect. Its narcotic action is stronger than that of chloroform, but, because of its low volatility, narcosis is less severe and much less common in industrial poisoning than in the case of other chlorinated hydrocarbons. The toxic action of this material is chiefly on the liver, where it produces acute yellow atrophy and cirrhosis. Fatty degeneration of the kidneys and heart, hemorrhage into the lungs and serous membranes, and edema of the brain have also been found in fatal cases. Some reports indicate a toxic action on the central nervous system with changes in the brain and in the peripheral nerves. The effect on the blood is one of hemolysis with appearance of young cells in the circulation and a monocptosis. Due to its solvent action on the natural skin oils, dermatitis is not uncommon. The initial symptoms resulting from exposure to the vapor are lachrymation, salivation, and irritation of the nose and throat. Continued exposure to high concentrations results in restlessness, dizziness, nausea, vomiting, and narcosis. The latter, however, is rare in industry. More commonly, exposure is less severe and most complaints are vague and related to the digestive and nervous systems. The patient's symptoms gradually progress to a more serious illness with development of toxic jaundice, liver tenderness, etc., and possibly albuminuria and edema. With serious liver damage, the jaundice increases and toxic symptoms appear, with somnolence, delirium, convulsions, and coma usually precedmg death. See also ACETYLENE COMPOUNDS and CHLORIDES.
職業ばく露Tetrachloroethane is used as an intermediate in the trichloroethylene production from acetylene and as a solvent; as a dry cleaning agent; as a fumigant; in cement; and in lacquers. It is used in the manufacture of artificial silk, artificial leather, and artificial pearls. Recently, its use as a solvent has declined due to replacement by less toxic compounds. It is also used in the estimation of water content in tobacco and many drugs, and as a solvent for chromium chloride impregnation of furs.
発がん性The EPA has classified this material as “likely to be carcinogenic to humans” based on data from an oral cancer bioassay in male and female Osborne–Mendel rats and B6C3F1 mice. In mice, a significant increase in the incidence of hepatoceullar carcinomas in both genders was observed. Male Osborne–Mendel rats showed increased incidence of hepatocellular carcinomas, which is a rare tumor in this strain.
The National Cancer Institute has included 1,1,2,2- tetrachloroethane in their bioassay series using rats and mice. Their summary states that the time-weighted average doses (by gavage) were 108 and 62 mg/kg/day for male rats, 76 and 43 mg/kg/day for female rats, and 282 and 142 mg/kg/day for all mice. There was a highly significant positive dose-related trend in the incidence of hepatocellular carcinoma in mice of both sexes. No statistically significant incidence of neoplastic lesions was observed in male or female rats. However, two hepatocellular carcinomas and one neoplastic nodule, which are rare tumors in the male Osborne–Mendel rat, were observed in high-dose males. Under the conditions of this bioassay, orally administered 1,1,2,2-tetrachloroethane was a liver carcinogen in B6C3Fl mice of both sexes.
The proposed metabolic pathway involves the production of dichloroacetic acid, which was identified as the major urinary metabolite in treated mice. Other pathways involve formation of trichloroethylene via dehydrochlorination or tetrachloroethylene via oxidation. Free radicals may also be formed.
From the NCI study, a oral slope factor (OSF) of 0.2 per mg/kg/day was developed by the EPA. No inhalation unit risk (IUR) was determined by the EPA because of absence of data from inhalation exposure.
環境運命予測Biological. Monodechlorination by microbes under laboratory conditions produced 1,1,2- trichloroethane (Smith and Dragun, 1984). In a static-culture-flask screening test, 1,1,2,2- tetrachloroethane (5 and 10 mg/L) was statically incubated in the dark at 25 °C with yeast extract and settled domestic wastewater inoculum. No significant degradation was observed after 28 d of incubation (Tabak et al., 1981).
Chemical/Physical. In an aqueous solution containing 0.100 M phosphate-buffered distilled water, 1,1,2,2-tetrachloroethane was abiotically transformed to 1,1,2-trichloroethane. This reaction was investigated within a temperature range of 30 to 95 °C at various pHs (5 to 9) (Cooper et al., 1987). Abiotic dehydrohalogenation of 1,1,2,2-tetrachloroethane yielded trichloroethylene (Vogel et al., 1987) and HCl (Kollig, 1993). The half-life for this reaction at 20 °C was reported to be 0.8 yr (Vogel et al., 1987). Under alkaline conditions, 1,1,2,2-tetrachloroethane dehydrohalogenated to trichloroethylene. The reported hydrolysis half-life of 1,1,2,2-tetrachloroethane in water at 25 °C and pH 7 is 146 d (Jeffers et al., 1989).
The evaporation half-life of 1,1,2,2-tetrachloroethane (1 mg/L) from water at 25 °C using a shallow-pitch propeller stirrer at 200 rpm at an average depth of 6.5 cm was 55.2 min (Dilling, 1977).
At influent concentrations of 1.0, 0.1, 0.01, and 0.001 mg/L, the GAC adsorption capacities were 11, 4.5, 1.9, and 0.8 mg/g, respectively (Dobbs and Cohen, 1980).
輸送方法UN1702 Tetrachloroethane or 1,1,2,2Tetrachloroe thane, Hazard Class: 6.1; Labels: 6.1Poisonous materials.
純化方法Stir the ethane, on a steam-bath, with conc H2SO4 until a fresh portion of acid remains colourless. The organic phase is then separated, distilled in steam, dried (CaCl2 or K2CO3), and fractionally distilled in a vacuum. [Beilstein 1 IV 144.]
Toxicity evaluationMetabolism of tetrachloroethane to reactive products plays a key role in its toxicity. Both nuclear and microsomal cytochrome P450 enzymes have been implicated in the metabolism of the compound, possibly releasing aldehydes, alkenes, acids, and free radicals that may react with biological tissues. Therefore, because of high metabolic activity of the liver, the formation of active metabolites is a likely mechanism for the toxicity tetrachloroethane. Hence, tetrachloroethane metabolism could result in the reductive formation of radical products, leading to the stimulation of lipid peroxidation resulting in hepatotoxic effects, as noted in carbon tetrachloride, a structurally related chlorinated alkane. Both dichloroacetic and trichloroacetic acids are known to cause proliferation of peroxisomes.
The mechanism of neurological toxicity of tetrachloroethane has not been well characterized. Studies of similar compounds suggest that the parent compound itself may be the causative agent. This property allows interference with neural membrane function, bringing about central nervous system depression, behavioral changes, and anesthesia.
The mechanisms by which tetrachloroethane produces carcinogenic effects are incompletely characterized. Tetrachloroethane has been shown to bind to DNA in the liver and several other organs in rats and mice, which may contribute to the carcinogenic process. Studies indicate that there may be initiating and promoting activities when tetrachloroethane is metabolized, possibly by cytochrome P450 enzymes producing urinary metabolites such as dichloroacetic acid, trichloroacetic acid, trichloroethylene, and tetrachloroethylene. Studies of chronic exposure of rats and mice to these specific metabolites revealed hepatic tumors in male and female mice. Although it is possible that the carcinogenicity of tetrachloroethane involves metabolism with these compounds, there is no direct evidence linking one or more metabolites to its carcinogenic effects. Tetrachloroethane may be metabolized to form free radicals, which can in turn covalently bind to tissues, including DNA.
不和合性Violent reaction with chemically active metals; strong caustics; strong acids; especially fuming sulfuric acid. Degrades slowly when exposed to air. Attacks plastic and rubber.
廃棄物の処理Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Incineration, preferably after mixing with another combustible fuel. Care must be exercised to assure complete combustion to prevent the formation of phosgene. An acid scrubber is necessary to remove the halo acids produced.
Tags:79-34-5