ChemicalBook
Chinese Japanese Germany Korea

Linezolid

Outline Indications Uses
Linezolid
Linezolid structure
CAS No.
165800-03-3
Chemical Name:
Linezolid
Synonyms
Zyvox;Linox;Zyvoxid;U 100766;Linospan;LINEZOLID;LINEZOLIDE;PNU 100766;Ray Nizzoli;Linezolid API
CBNumber:
CB1287912
Molecular Formula:
C16H20FN3O4
Formula Weight:
337.35
MOL File:
165800-03-3.mol

Linezolid Properties

Melting point:
176-1780C
alpha 
D20 -9° (c = 0.919 in chloroform)
storage temp. 
Store at RT
solubility 
DMSO: >20mg/mL
form 
powder
color 
white to off-white
InChIKey
TYZROVQLWOKYKF-ZDUSSCGKSA-N
CAS DataBase Reference
165800-03-3(CAS DataBase Reference)
SAFETY
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
Hazard Codes  Xn
Risk Statements  20/21/22
Safety Statements  36-24/25
WGK Germany  3
RTECS  AC2720000
HS Code  29419000
Hazardous Substances Data 165800-03-3(Hazardous Substances Data)
Symbol(GHS):
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H372 Causes damage to organs through prolonged or repeated exposure Specific target organ toxicity, repeated exposure Category 1 Danger P260, P264, P270, P314, P501
Precautionary statements:
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P314 Get medical advice/attention if you feel unwell.

Linezolid price More Price(7)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich PZ0014 Linezolid ≥98% (HPLC) 165800-03-3 5mg $91.6 2018-11-13 Buy
Sigma-Aldrich 1367561 Linezolid United States Pharmacopeia (USP) Reference Standard 165800-03-3 200mg $348 2018-11-13 Buy
Cayman Chemical 15012 Linezolid ≥98% 165800-03-3 25mg $154 2018-11-13 Buy
Cayman Chemical 15012 Linezolid ≥98% 165800-03-3 10mg $65 2018-11-13 Buy
Sigma-Aldrich PZ0014 Linezolid ≥98% (HPLC) 165800-03-3 25mg $365 2018-11-13 Buy

Linezolid Chemical Properties,Uses,Production

Outline

Linezolid (U-100766, PNU-100766) developed and produced by the US Pharmacia & Upiohn company (which has been acquired by Pfizer) ,is a new type of azole oxazolidinone class of synthetic antibacterial drugs, the FDA on April 18, 2000 approved the drug to market. This product is the first drug in American in 40 years which is approved for the treatment of methicillin-resistant Staphylococcus aureus infection, September 2007 month in China's listed, it belongs to the Medicare B drugs.

Indications

For the treatment of Gram-positive (G +) bacteria caused infections, including concurrent bacteremia; nosocomial pneumonia; community-acquired pneumonia ( because bacteria are not the same,pneumonia is clinically divided into hospital-acquired pneumonia and community-acquired pneumonia) and concomitant bacteremia; it can be applied for the complexity of the skin and skin and soft tissue infections, including osteomyelitis in diabetic foot infections; uncomplicated skin and skin and soft tissue infections; it is also used for the treatment of vancomycin-resistant feces enterococci.
The above information is edited by the chemicalbook of Tian Ye.

Uses

fully synthetic oxazolidinone antibiotics.
oxazolidinone antibacterial drugs.
anti-inflammatory drug.
inhibit bacterial mRNA translation.

Description

Linezolid reached the US market for the treatment of patients with infections caused by serious Gram-positive pathogens, particularly skin and soft tissue infections, communityacquired pneumonia and vancomycin-resistant enterococcal infections. Linezolid is the (S)-enantiomer of an oxazolidin-2-one synthesized in a multistep process from 3,4- difluoronitrobenzene, the key step being the cyclization of a carbamate, using a chiral epoxyester, into an enantiomerically pure oxazolidin-2-one. Linezolid can be considered as the first of a new class of antibacterial agents known as oxazolidinones, its mechanism of action being related to the inhibition of early ribosomal protein synthesis without directly inhibiting DNA or RNA synthesis. In vitro studies demonstrated that linezolid was effective, at potency levels similar to vancomycin, against staphylococcal, streptococcal and pneumococcal infections (MIC values in the range of 0.5 to 2 μg/ml), enterococcal species including VRE and VSE (MIC values about 4 μg/ml), but also other vancomycin-resistant bacteria. Linezolid is rapidly absorbed orally, its bioavailability is nearly complete at 250 mg dose giving a Cmax to MIC ratio sufficient to have pathogenic strain eradication in the clinical setting. It is considered that this new promising agent may offer new options for therapy of multi-drug infections.

Chemical Properties

White Solid

Originator

Pharmacia Corp. (US)

Uses

Prototype of the oxazolidinone antimicrobials; inhibits bacterial mRNA translation.

Uses

antibacterial

Definition

ChEBI: An organofluorine compound that consists of 1,3-oxazolidin-2-one bearing an N-3-fluoro-4-(morpholin-4-yl)phenyl group as well as an acetamidomethyl group at position 5. A synthetic antibacterial agent that inhibits bacterial protein synt esis by binding to a site on 23S ribosomal RNA of the 50S subunit and prevents further formation of a functional 70S initiation complex.

brand name

Zyvox (Pharmacia & Upjohn).

Antimicrobial activity

It exhibits potent activity against a wide range of Gram-positive organisms, including those that are resistant to other antimicrobial agents. Methicillinresistant Staph. aureus and coagulase-negative staphylococci are susceptible, as are enterococci, including vancomycin-resistant Enterococcus faecalis and Ent. faecium. Penicillin-sensitive and resistant isolates of Streptococcus pneumoniae are equally susceptible. Less common Gram-positive pathogens are also susceptible; the minimum inhibitory concentrations (MICs) for Bacillus spp., Corynebacterium spp., Listeria monocytogenes, Aerococcus spp., Micrococcus spp. and Rhodococcus equi are all ≤2 mg/L. M. tuberculosis is susceptible, with typical MICs ≤1 mg/L for sensitive and multidrug- resistant strains.
All enterobacteria, Pseudomonas spp. and other non-fermentative aerobic Gram-negative bacilli, including Acinetobacter spp., are resistant. Moraxella catarrhalis, Legionella spp.,Mycoplasma spp. and Chlamydia spp. are inhibited by 4–8 mg/L. Activity against Haemophilus influenzae is modest.
Among anaerobes, Clostridium perfringens and Peptostreptococcus spp. are inhibited by <2 mg/L. Typical MICs (mg/L) for Gram-negative anaerobes include: Bacteroides spp., 4–8; Prevotella spp., 1–4; Fusobacterium spp., 0.125–1.
Activity is bacteristatic against most susceptible species, but modest bactericidal activity has been demonstrated against some strains of Str. pneumoniae, C. perfringens and Bacteroides fragilis. Inhibition of toxin production by staphylococci and streptococci in the presence of sub-MIC concentrations has been described.
Linezolid may antagonize the bactericidal action of some antibiotics (e.g. gentamicin). No evidence of synergy has been found in various experimental systems with gentamicin against vancomycin-resistant Enterococcus spp. or with vancomycin, gentamicin, ciprofloxacin, fusidic acid or rifampicin (rifampin) against methicillin-resistant Staph. aureus.

Acquired resistance

Isolates of Staph. aureus and E. faecalis for which the MIC of linezolid is raised have been obtained following serial exposure to gradients of the drug. However, induction of resistance requires many passages over several weeks. Resistance in these laboratory mutants is associated with modifications of the 23S rRNA gene.
Overall, resistance rates in clinical isolates are very low at <0.5%. Resistance is reported primarily in coagulase-negative staphylococci (1.77%) and enterococci (1.13%; mostly E. faecium), with exceptionally low resistance rates in Staph. aureus (0.06%). Risk factors for emergence of resistance include prolonged use of the drug, the presence of irremovable indwelling devices, sequestered sites of infection and low-dose therapy for infections caused by vancomycin-resistant enterococci or methicillin-resistant Staph. aureus. Resistance in clinical isolates is most often associated with gene mutations in which guanosine is replaced by uracil in the 23S rRNA. Nosocomial clonal spread of such mutants has been described in coagulase-negative staphylococci and enterococci. Resistance conferred by a novel mobile element, cfr, has been described in two isolates of staphylococci.

General Description

Linezolid (Zyvox) is an oxazolidinedione-type antibacterialagent that inhibits bacterial protein synthesis. It acts in theearly translation stage, preventing the formation of a functionalinitiation complex. Linezolid binds to the 30S and 70Sribosomal subunits and prevents initiation complexes involvingthese subunits. Collective data suggest that the oxazolidindionespartition their ribosomal interaction between thetwo subunits. Formation of the early tRNAfMet-mRNA-70Sor 30S is prevented. Linezolid is a newer synthetic agent, andhence, cross-resistance between the antibacterial agent andother inhibitors of bacterial protein synthesis has notbeen seen.
Linezolid possesses a wide spectrum of activity againstGram-positive organisms, including MRSA, penicillin-resistantpneumococci, and vancomycin-resistant Enterococcusfaecalis and E. faecium. Anaerobes such as Clostridium,Peptostreptococcus, and Prevotella spp. are sensitive tolinezolid.Linezolid is a bacteriostatic agent against most susceptibleorganisms but displays bactericidal activity against somestrains of pneumococci, B. fragilis, and Clostridiumperfringens.The indications for linezolid are for complicated anduncomplicated skin and soft-tissue infections, communityandhospital-acquired pneumonia, and drug-resistant Grampositiveinfections.

Pharmaceutical Applications

A synthetic oxazolidinone available for oral or intravenous administration. Soluble in water at a pH range of 5–9. Aqueous solutions (2 g/L) are stable at 25°C, 4°C and ?20°C for at least 3 months.

Biological Activity

Oxazolidinone antibiotic. Inhibits bacterial protein synthesis prior to chain initiation. Displays potent antibacterial activity against a variety of multidrug-resistant gram-positive microbes in vitro and in vivo .

Pharmacokinetics

Oral absorption: >95%
Cmax 400 mg oral: 11–12 mg/L after 1–2 h
600 mg oral :18–21 mg/L after 1–2 h
600 mg intravenous: >15 mg/L after 1 h
Plasma half-life: c. 5.5 h
Volume of distribution :45–50 L
Plasma protein binding: 31%
absorption
Bioavailability after oral administration is almost complete. Plasma trough concentrations following oral doses of 400 mg and 600 mg every 12 h are >3.0 and >4.0 mg/L, respectively. With the higher dose, administered orally or intravenously, plasma concentrations remain above the MIC for most susceptible species throughout a 12 h dosage interval. After administration with high fat content food the maximum serum concentration achieved is lower and the peak delayed, but the area under the concentration–time curve (AUC) is unaltered.
Distribution
Linezolid is distributed widely in tissues and fluids. In human volunteers, maximum concentrations in inflammatory blister fluid averaged over 16 mg/L, with a mean penetrance of 104%. In patients undergoing hip arthroplasty, linezolid rapidly penetrates into bone, fat and muscle, achieving levels in excess of the MICs for susceptible organisms, with therapeutic concentrations maintained in the perioperative site hematoma fluid for more than 16 h. Mean penetration of linezolid into inflamed diabetic foot infection tissue is 101%, producing a concentration of 9.6 μg/g. Studies with human volunteers have also indicated good concentrations in pulmonary alveolar fluid with a mean fluid to plasma ratio of 3.2:1. When the meninges are not inflamed, the concentration in cerebrospinal fluid (CSF) is lower than that of plasma, with a CSF:plasma ratio of approximately 0.7:1. The concentration in sweat is about half that of plasma.
Other sites at which local concentrations exceed corresponding plasma concentrations, based on animal studies, include kidney, adrenal, liver and gastrointestinal tract. In a rat model of endocarditis, heart valve tissue and plasma concentrations were approximately equivalent.
Pharmacokinetic properties are unaltered in elderly patients and dose adjustment is unnecessary. Single-dose pharmacokinetic studies indicate that plasma clearance and volume of distribution are greater in children than in adults, while peak and trough serum concentrations are lower. Shorter dosing intervals (every 8 h) are therefore recommended for most therapeutic indications in children.
Metabolism
Linezolid undergoes non-renal as well as renal metabolism. Non-renal metabolism is by slow chemical oxidation in a process that does not discernibly interact with the hepatic cytochrome P450 system. The oxidants contributing to metabolism of the drug have not yet been fully elucidated, but in-vivo studies suggest the process is mediated by reactive oxygen species produced throughout the body. The metabolites produced following non-renal metabolism are an aminoethoxyacetic acid and a hydroxyethylglycine metabolite, neither of which has any significant antimicrobial activity. Non-renal clearance rates are 120 mL/min and account for almost 65% of total body clearance. Since it does not appear to act as an inducer or inhibitor of cytochrome P450 enzymes, interactions with drugs metabolized by these enzymes are unlikely to occur.
excretion
Renal clearance accounts for approximately 50 mL/min of the total body clearance of 170 mL/min. Under steady-state conditions, approximately 30% of the dose is excreted unchanged in the urine.
In populations with varying degrees of renal function (creatinine clearance range of 10–>80 mL/min) there is no evidence of alteration in total body clearance, and adjustment of dose in patients with renal insufficiency is not recommended. However, accumulation of metabolites, up to 10-fold, occurs in patients with severe renal impairment (creatinine clearance <30 mL/min). The clinical significance of this is unknown, but linezolid should be used with caution in patients with severe renal impairment. Approximately one-third of the dose is removed by hemodialysis and since total apparent clearance is increased during dialysis, one of the 12-hourly doses should be administered after the procedure. Accumulation of metabolites also occurs in patients on dialysis, with unknown clinical significance, and caution in use in hemodialysis is advised. There are no available data on pharmacokinetics in patients undergoing peritoneal dialysis or hemofiltration.
In patients with mild to moderate hepatic impairment there is no significant change to the pharmacokinetic profile. Accordingly, dosage adjustment is not recommended in patients with mild to moderate liver disease. The pharmacokinetics of linezolid in severe hepatic failure have not been studied, but as its metabolism is predominantly non-enzymatic, the pharmacokinetics would not be expected to alter significantly.

Clinical Use

Linezolid is primarily used for the treatment of infections caused, or likely to be caused, by methicillin-resistant Staph. aureus, vancomycin-resistant enterococci and penicillin resistant Str. pneumoniae. Combination therapy with an antimicrobial active against Gram-negative bacteria is indicated if concomitant infection with a Gram-negative pathogen is suspected or confirmed.
Outside of licensed indications, it has been used in the treatment of bone and joint infections, endocarditis, central nervous system infections, infections in neutropenic patients and drug-resistant tuberculosis.

Side effects

Most reported adverse events are mild or moderate, with reactions severe enough to lead to withdrawal of therapy occurring in less than 3% of patients.The most frequent side effects are gastrointestinal disturbances (diarrhea, nausea, vomiting and taste alteration) and headache. The reported incidence of Clostridium difficile complications is 0.2%.
Mild and transient abnormalities of liver function tests (elevation of transaminases and/or alkaline phosphatase) occur in more than 1% of patients. Skin reactions, including rashes, dermatitis, pruritus and diaphoresis, are uncommon.
Serious but infrequent adverse drug effects include myelosuppression, peripheral neuropathy, optic neuropathy and lactic acidosis. These adverse events, which probably result from inhibition of mitochondrial protein synthesis, occur primarily in patients treated for >28 days. Myelosuppression generally occurs only after more than 2 weeks of treatment and increases with longer durations. It occurs more frequently in patients with severe renal insufficiency and is reversible on discontinuation of therapy.
Reversal of cytopenias by concomitant administration of vitamin B6 has been described. Weekly monitoring of full blood count is recommended for all patients, with more frequent monitoring of those in the following categories: pre-existing anemia or thrombocytopenia; receiving concomitant drugs that may cause anemia or thrombocytopenia; severe renal insufficiency; treatment for more than 10–14 days.
Peripheral and optic neuropathy are serious but infrequent. Most cases are associated with treatment for more than 28 days (median 5 months), but neuropathies have occurred with shorter courses. In most cases optic neuropathy improved or resolved on cessation of therapy but peripheral neuropathy did not.
Lactic acidosis can occur within a week of commencing therapy but is most often seen in patients receiving prolonged treatment (median 6 weeks).
Linezolid is a weak, reversible monoamine oxidase inhibitor (MAOI) with potential interaction with adrenergic and serotonergic drugs. Co-administration of sympathomimetics, vasopressors or dopaminergic agents may lead to an enhanced pressor response. It should be co-administered with these drugs only under conditions where close observation and monitoring of blood pressure is available, and their initial doses should be reduced and then titrated to achieve the desired pressor effect. Similarly, concomitant administration of linezolid with agents that increase central nervous system serotonin concentrations can lead to serotonin toxicity (serotonin syndrome). This most commonly follows concurrent administration of selective serotonin receptor inhibitors, but can occur with tricyclic antidepressants or any MAOI. Since MAOIs and their active metabolites have long elimination half-lives, linezolid is contraindicated in patients who are taking these drugs or have taken them in the previous 2 weeks.

Linezolid Preparation Products And Raw materials

Raw materials

Preparation Products


Linezolid Suppliers

Global( 338)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Hebei Chisure Biotechnology Co., Ltd.
+8613292893290
+8613292893290 Nancy@SpeedGainpharma.com CHINA 630 58
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 Abel@chembj.com CHINA 3217 55
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 22043 58
Beijing Cooperate Pharmaceutical Co.,Ltd.
+86-10-60279497 +86(0)15646567669
+86-10-60279497 sales01@cooperate-pharm.com CHINA 1530 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20786 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32651 55
Nanjing ChemLin Chemical Industry Co., Ltd.
025-83697070;product@chemlin.com.cn
product@chemlin.com.cn CHINA 3015 60
Shanghai Yingrui Biopharma Co., Ltd.
+86-21-33585366 E-mail:sales03@shyrchem.com
+86-21-34979012 sales03@shyrchem.com CHINA 663 60
Hubei XinRunde Chemical Co., Ltd.
+8615102730682; +8618874586545
02783214688 bruce@xrdchem.cn CHINA 552 55
TianYuan Pharmaceutical CO.,LTD
+86-755-23284190 13684996853
+86-755-23284190 sales@tianpharm.com CHINA 308 58

View Lastest Price from Linezolid manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2018-08-21 Linezolid
165800-03-3
US $7.00 / KG 1KG 99% 1000KG career henan chemical co
2018-08-20 Linezolid
165800-03-3
US $1.00 / KG 1KG 99% Customized career henan chemical co
2018-04-11 Acetamide
165800-03-3
US $200.00 / KG 1G 99% 10MT Hubei XinRunde Chemical Co., Ltd.

165800-03-3(Linezolid)Related Search:


Copyright 2017 © ChemicalBook. All rights reserved