ChemicalBook
Chinese Japanese Germany Korea

D(+)-Glucose

Description References
D(+)-Glucose
D(+)-Glucose structure
CAS No.
50-99-7
Chemical Name:
D(+)-Glucose
Synonyms
sirup;Vadex;Emdex;Candex;Flolys;Hexose;Cartose;DEXTROSE;Glucolin;Roferose
CBNumber:
CB2250047
Molecular Formula:
C6H12O6
Formula Weight:
180.16
MOL File:
50-99-7.mol

D(+)-Glucose Properties

Melting point:
150-152 °C(lit.)
alpha 
52.75 º (c=10, H2O, NH4OH 25 ºC)
Boiling point:
232.96°C (rough estimate)
Density 
1.5440
refractive index 
53 ° (C=10, H2O)
storage temp. 
2-8°C
solubility 
H2O: 1 M at 20 °C, clear, colorless
pka
pKa 12.43(H2O,t = 18,)(Approximate)
form 
Crystalline Powder
color 
White
PH
5.0-7.0 (25℃, 1M in H2O)
optical activity
[α]25/D +52.5 to +53.0°(lit.)
Water Solubility 
Soluble
λmax
λ: 260 nm Amax: 0.03
λ: 280 nm Amax: 0.02
Merck 
14,4459
BRN 
1281608
Stability:
Stable. Substances to be avoided include strong oxidizing agents. Combustible.
InChIKey
WQZGKKKJIJFFOK-DVKNGEFBSA-N
CAS DataBase Reference
50-99-7(CAS DataBase Reference)
NIST Chemistry Reference
Glucose(50-99-7)
SAFETY
  • Risk and Safety Statements
Hazard Codes  Xi,Xn
Risk Statements  36/37/38-63-62-46-36/38-21
Safety Statements  26-36/37-24/25-53-25
WGK Germany  1
RTECS  LZ6600000
3
Autoignition Temperature 500 °C
TSCA  Yes
HS Code  17023051
Toxicity LD50 orally in Rabbit: 25800 mg/kg

D(+)-Glucose price More Price(54)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 16325 D-(+)-Glucose meets analytical specification of Ph. Eur., BP, anhydrous 50-99-7 1kg $52.8 2018-11-13 Buy
Sigma-Aldrich 1181302 Dextrose United States Pharmacopeia (USP) Reference Standard 50-99-7 500mg $421.4 2018-11-13 Buy
TCI Chemical G0048 D-(+)-Glucose >98.0%(GC) 50-99-7 25g $14 2018-11-22 Buy
TCI Chemical G0048 D-(+)-Glucose >98.0%(GC) 50-99-7 500g $16 2018-11-22 Buy
Alfa Aesar A16828 D-(+)-Glucose, anhydrous, 99% 50-99-7 500g $33.3 2018-11-13 Buy

D(+)-Glucose Chemical Properties,Uses,Production

Description

D(+)-glucose ,a short form of dextrorotatory glucose, is a stereoisomer of glucose molecule, which is biologically active and whose bottom chiral carbon has its hydroxyl group (OH) located spatially to the right. Its molecule can exist in an open-chain (acyclic) and ring (cyclic) form and has two isomers α- and β-. It is the main source of energy in the form of ATP for living organisms. It is naturally occurring and is found in fruits and other parts of plants in its free state. In animals, it arises from the breakdown of glycogen in a process known as glycogenolysis. D-(+)-Glucose has been used as a standard for the estimation of total sugar in hydrolyzed starch by phenol-sulfuric acid method. It has also been used in the preparation of the liquid media for culturing some yeast cells. In addition, it is used therapeutically in fluid and nutrient replacement, such as glucose syrup and glucose powder. It can be obtained by enzymatic cleavage of starch, so there are multiple sources like sugar cane, sugar beet, corn (corn syrup), potatoes and wheat. Today, large-scale starch hydrolysis is used to produce glucose.

References

1. http://www.sigmaaldrich.com/catalog/product/sigma/g8270?lang=en&region=CA
2. https://pubchem.ncbi.nlm.nih.gov/compound/D-glucose#section=Top
3. http://www.hmdb.ca/metabolites/HMDB00122
4. http://www.biology-online.org/dictionary/D-glucose
5. http://www3.hhu.de/biodidaktik/zucker/sugar/glukose.html

Description

Glucose is one of the most important biological compounds found in nature. It is a main product in photosynthesis and is oxidized in cellular respiration. Glucose polymerizes to form several important classes of biomolecules including cellulose, starch, and glycogen. It also combines with other compounds to produce common sugars such as sucrose and lactose. The form of glucose displayed above is D-glucose. The “D” designation indicates the configuration of the molecule. The “D” configuration specifies that the hydroxyl group on the number 5 carbon is on the right side of the molecule. The mirror image of D-glucose produces another form of glucose called L-glucose.
Glucose is the most common form of a large class of molecules called carbohydrates. Carbohydrates are the predominant type of organic compounds found in organisms and include sugar, starches, and fats. Carbohydrates, as the name implies, derive their name from glucose,C6H12O6, which was considered a hydrate of carbon with the general formula of Cn(H2O)n, where n is a positive integer. Although the idea of water bonded to carbon to form a hydrate of carbon was wrong, the term carbohydrate persisted. Carbohydrates consist of carbon, hydrogen, and oxygen atoms, with the carbon atoms generally forming long unbranched chains. Carbohydrates are also known as saccharides derived from the Latin word for sugar, saccharon.

Chemical Properties

White or almost white, crystalline powder.

History

D-Glucose is the most important and predominant monosaccharide found in nature. It was isolated from raisins by Andreas Sigismund Marggraf (1709–1782) in 1747, and in 1838, Jean-Baptiste-André Dumas (1800–1884) adopted the name glucose from the Greek word glycos meaning sweet. Emil Fischer (1852–1919) determined the structure of glucose in the late 19th century. Glucose also goes by the names dextrose (from its ability to rotate polarized light to the right), grape sugar, and blood sugar. The term blood sugar indicates that glucose is the primary sugar dissolved in blood. Glucose’s abundant hydroxyl groups enable extensive hydrogen bonding, and so glucose is highly soluble in water.

Uses

Glucose is the primary fuel for biological respiration. During digestion, complex sugarsand starches are broken down into glucose (as well as fructose and galactose) in the small intestine.Glucose then moves into the bloodstream and is transported to the liver where glucoseis metabolized through a series of biochemical reactions, collectively referred to as glycolysis.Glycolysis, the breakdown of glucose, occurs in most organisms. In glycolysis, the final productis pyruvate. The fate of pyruvate depends on the type of organism and cellular conditions.In animals, pyruvate is oxidized under aerobic conditions producing carbon dioxide. Underanaerobic conditions in animals, lactate is produced. This occurs in the muscle of humansand other animals. During strenuous conditions the accumulation of lactate causes musclefatigue and soreness. Certain microorganisms, such as yeast, under anaerobic conditions convertpyruvate to carbonic dioxide and ethanol. This is the basis of the production of alcohol.Glycolysis also results in the production of various intermediates used in the synthesis of otherbiomolecules. Depending on the organism, glycolysis takes various forms, with numerousproducts and intermediates possible.

Uses

glucose has moisture-binding properties and provides the skin with a soothing effect. It is a sugar that is generally obtained by the hydrolysis of starch.

Uses

Glucose is a corn sweetener that is commercially made from starch by the action of heat and acids or enzymes, resulting in the complete hydrolysis of the cornstarch. There are two types of refined commercially available: hydrate, which contains 9% by weight water of crystallization and is the most often used, and anhydrous glucose, which contains less than 0.5% water. is a reducing sugar and produces a high-temperature browning effect in baked goods. It is used in ice cream, bakery products, and confections. It is also termed corn sugar.

Uses

Dextrose(D-glucose), a simple sugar (monosaccharide), is an important carbohydrate in biology

Uses

Labelled D-Glucose is a simple sugar that is present in plants. A monosaccharide that may exist in open chain or cyclic conformation if in solution. It plays a vital role in photosynthesis and fuels the energy required for cellular respiration. D-Glucose is used in various metabolic processes including enzymic synthesis of cyclohexyl-α and β-D-glucosides. Can also be used as a diagnostic tool in detection of type 2 diabetes mellitus and potentially Huntington's disease through analysis of blood-glucose in type 1 diabetes mellitus.

Uses

A primary source of energy for living organisms

Definition

ChEBI: The open chain form of D-glucose.

Definition

Naturally occurring GLUCOSE belongs to the stereochemical series D and is dextrorotatory, indicated by the symbol (+). Thus the term dextrose is used to indicate D-(+)-glucose. As other stereochemical forms of glucose have no significance in biological systems the term ‘glucose’ is often used interchangeably with dextrose in biology.

brand name

Cartose (Sterling Winthrop) Dextrose.

Biotechnological Production

The D-configuration of D-isoascorbic acid at C5 allows a short biosynthetic pathway from D-glucose, i.e., its 1,5-glucopyranoside, which is oxidized to D-glucono-1,5-lactone by glucose oxidase followed by oxidation at C2 by D-gluconolactone oxidase. The immediate oxidation product of D-glucono-1,5-lactone by gluconolactone oxidase already has reducing activity on, e.g., 2,6-dichlorphenolindophenol. It is rather stable at pH 4. Upon pH shift, this compound spontaneously converts to D-isoascorbic acid. The unidentified immediate oxidation product could be 2-keto-D-glucono-1,5-lactone, which rearranges via a reversible transesterification reaction to the 1,4-lactone followed by an irreversible enolization to D-isoascorbic acid. The formation of 2-keto-D-gluconic acid as the result of 2-keto-D-glucono-1,5-lactone hydrolysis was not reported. The oxidation of the 1,4-lactone by D-gluconolactone oxidase might also occur to some extent, since D-glucono-1,5-lactone shows a tendency to slowly rearrange to the 1,4-lactone at pH[4and the D-gluconolactone oxidase of Penicillium cyaneofulvum accepts both D-glucono-1,5-lactone and the corresponding 1,4-lactone . This reaction would directly deliver the keto-isomer of D-isoascorbic acid. The sequence of the reactions from D-glucose to D-isoascorbic acid, first oxidation at C1, then oxidation at C2 (C1, C2), is similar to the naturally evolved Asc biosynthesis from L-galactose or L-gulose.
Oxidation of D-gluconolactone at C2 is also afforded by pyranose-2-oxidase from Polyporus obtusus. In this reaction both D-isoascorbic acid and 2-keto- D-gluconic acid were obtained in a roughly 1:1 ratio. Obviously, following the natural C1, C2 oxidation sequence, transesterification and (iso)ascorbic acid formation are preferred over hydrolysis and 2-keto sugar acid formation or are at least possible to a significant extent.
If the sequence of oxidation reactions is reversed (C2, C1), i.e., D-glucopyranose is first oxidized by pyranose-2-oxidase to D-glucosone followed by glucose oxidase treatment, 2-keto-D-gluconate was reported as the only oxidation product. Though not explicitly reported, it is safe to assume that the later oxidation occurs with 2-keto-D-gluco-1,5-pyranose and delivers as the immediate reaction product 2-keto-D-glucono-1,5-lactone, which hydrolyzes affording 2-keto-D-gluconate. It is unclear why the spontaneous follow-up reaction of 2-keto-D-glucono-1,5-lactone delivers, at least to some extent, D-isoascorbic acid if obtained according to the C1, C2 reaction sequence, but only 2-keto-D-gluconate if obtained by the C2, C1 oxidation sequence.

General Description

Watery odorless colorless liquid. Denser than water and soluble in water. Hence sinks in and mixes with water.

Air & Water Reactions

Water soluble.

Reactivity Profile

A weak reducing agent.

Health Hazard

No toxicity

Safety Profile

Mildly toxic by ingest ion. An experimental teratogen. Experi mental reproductive effects. Questionable carcinogen with experimental tumorigenic data. Mutation data reported. Potentially explosive reaction with potassium nitrate + sodium peroxide when heated in a sealed container. Uxtures with alkali release carbon monoxide when heated. When heated to decomposition it emits acrid smoke and irritating fumes.

Purification Methods

Crystallise -D-glucose from hot glacial acetic acid or pyridine. Traces of solvent are removed by drying in a vacuum oven at 75o for >3hours. [Gottfried Adv Carbohydr Chem 5 127 1950, Kjaer & Lindberg Acta Chem Scand 1 3 1713 1959, Whistler & Miller Methods in Carbohydrate Chemistry I 1301962, Academic Press, Beilstein 1 IV 4306.] [For equilibrium forms see Angyal Adv Carbohydr Chem 42 15 1984, Angyal & Pickles Aust J Chem 25 1711 1972.]

D(+)-Glucose Preparation Products And Raw materials

Raw materials

Preparation Products


D(+)-Glucose Suppliers

Global( 393)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 Abel@chembj.com CHINA 3194 55
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 21752 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20672 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32447 55
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 1861 55
Shanghai Zheyan Biotech Co., Ltd.
18017610038
zheyansh@163.com CHINA 3623 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30002 58
Chemwill Asia Co.,Ltd.
86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 23976 58
Cangzhou Wanyou New Material Technology Co.,Ltd
18631714998
sales@czwytech.com CHINA 913 58
hdzhl biotechnology co., ltd
86-13032617415
sales@luchibiology.com CHINA 1173 58

View Lastest Price from D(+)-Glucose manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2019-07-21 Glucose
50-99-7
US $1.00 / KG 1KG 99% 100000 Kilogram/Kilograms per Month Cangzhou Wanyou New Material Technology Co.,Ltd
2018-12-16 D(+)-Glucose
50-99-7
US $8.00 / kg 1kg 98% 10MT career henan chemical co

D(+)-Glucose Spectrum


50-99-7(D(+)-Glucose)Related Search:


Copyright 2017 © ChemicalBook. All rights reserved