ChemicalBook
Chinese Japanese Germany Korea

Artemisinin

Pharmacology and mechanism of action Indications Side effects Contraindications Preparations Pharmaceutical Applications Drugs for treatment of malaria Chemical properties Uses Production method Category Toxic grading Acute toxicity Flammability and Hazardous properties Storage and transportation characteristics Fire extinguishing agent References
Artemisinin
Artemisinin structure
CAS No.
63968-64-9
Chemical Name:
Artemisinin
Synonyms
QHS;qinghosu;ARTEANUIN;QINGHAOSU;QINGHAOSA;qinghausu;ARTEMISINE;ARTEANNUIN;Quinghaosu;qinghausau
CBNumber:
CB3387975
Molecular Formula:
C15H22O5
Formula Weight:
282.33
MOL File:
63968-64-9.mol

Artemisinin Properties

Melting point:
156-157 °C(lit.)
alpha 
76 º (c=0.5,MeOH)
Boiling point:
344.94°C (rough estimate)
Density 
1.0984 (rough estimate)
refractive index 
75 ° (C=0.5, MeOH)
storage temp. 
Store at +4°C
solubility 
Soluble to 100mM in DMSO and to 75mM in ethanol
optical activity
[α]20/D +76°, c = 0.5 in methanol
Merck 
14,817
Stability:
Stable. Combustible. Incompatible with strong oxidizing agents, acids, acid chlorides, acid anhydrides. May absorb, and react with, carbon dioxide from the air.

SAFETY

Safety Statements  22-24/25
WGK Germany  2
RTECS  KD4170000
HS Code  29322985
Toxicity LD50 in mice (mg/kg): 5105 orally; 2800 i.m.; 1558 i.p. (Koch); LD50 in mice, rats (mg/kg): 4228, 5576 orally; 3840, 2571 i.m. (China Cooperative Research Group on Qinghaosu)

Artemisinin price More Price(9)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 361593 Artemisinin 98% 63968-64-9 100mg $75.2 2018-11-13 Buy
Sigma-Aldrich 1042747 Artemisinin United States Pharmacopeia (USP) Reference Standard 63968-64-9 50mg $1095.15 2018-11-23 Buy
TCI Chemical A2118 Artemisinin >97.0%(HPLC) 63968-64-9 1g $53 2018-11-22 Buy
TCI Chemical A2118 Artemisinin >97.0%(HPLC) 63968-64-9 5g $156 2018-11-22 Buy
Alfa Aesar J65406 Artemisinin, 98% 63968-64-9 1g $118 2018-11-13 Buy

Artemisinin Chemical Properties,Uses,Production

Pharmacology and mechanism of action

Artemisinin (qinghaosu) is an antimalarial compound first isolated in pure form in 1972 by Chinese scientists from the herb qinghao (Artemisia annua). This herb (worm wood) has been used in Chinese traditional medicine to control fever for over 2000 years [1]. Artemisinin is a compound with a peculiar structure, low toxicity and high efficacy even in severe chloroquine resistant P. falciparum malaria. Unlike current antimalarial drugs which have a nitrogen-containing heterocylic ring system, it is a sesquiterpene lactone with an endoperoxide linkage. The endoperoxide linkage is essential for the antimalarial activity of the drug. Artemisinin has been shown to be a potent schizontocidal drug both in vitro and in experimental animal models, but it has no practical effect against the exoerythrocytic tissue phase, the sporozoites and the gametocytes[2].

The mechanism of action of artemisinin is not clearly understood. The drug selectively concentrates in parasitized cells by reacting with the intraparasitic hemin (hemozoin). In vitro this reaction appears to generate toxic organic free radicals causing damage to parasite membranes [2-4]. The derivatives of artemisinin are more potent than the parent drug and have apparently a similar mechanism of action [1,2].

Indications

Artemisinin and its derivatives are valuable drugs for the management of malaria. They should not be used unnecessarily or with incomplete dosage regimens. They are indicated only in areas where multidrug resistant P. falciparum malaria is prevalent [5].
 

Side effects

Artemisinin and its derivatives are exceptionally safe drugs. Millions of people have taken them and serious side effects have yet to be reported. The most commonly reported side effects include mild and transient gastrointestinal problems (such as nausea, vomiting, abdominal pain and diarrhoea), headache, and dizziness particularly after oral administration. Transient first degree heart block and bradycardia were reported in a few individuals, who received artesunate or artemether at the standard doses. Brief episodes of drug-induced fever have also been observed in a few studies [6,5]. After rectal administration the patients may experience tenesmus, abdominal pain and diarrhoea. A transient dose-related decrease in circulating reticulocytes has been reported following high doses of artesunate above 4 mg/kg for 3 days. All values returned to pre-treatment values within 14 days [6,5]. Neurotoxicity has been observed in animal studies but has never been documented in man [7].
 

Contraindications

There are no known contraindications. However, artemisinin and its derivatives should only be used when other antimalarial drugs do not work.
 

Preparations

Artemether
• Paluther® (Rhône-Poulenc Rorer). Solution for injection 80 mg/ml.
• Artenam® (Dragon Pharmaceuticals Ltd, Wales UK). Solution for injection 100 mg/ml.
 
Several other preparations containing artemisinin derivatives are manufactured in China and Vietnam. The availability of these preparations is presently uncertain.

Pharmaceutical Applications

The genus Artemisia of the family Asteraceae is comprised of more than 500 species which are found all over the world. Many members of the genus are used in various traditional therapies including East Asian medicine and Ayurveda. Some important species which have been studied for their various therapeutic potentials are A. asiatica for inflammation, infection, and ulcerogenic disorders; A. annua for fevers specially malaria; A. afra for cough, cold, headache, dyspepsia, colic, diabetes, and kidney disorders; A. judaica for gastrointestinal disorders; A. tripartite for sore throat, tonsillitis, cold, headache, and wounds; A. vulgaris as analgesic, anti-inflammatory, and antispasmodic; and A. verlotorum for hypertension (Bora and Sharma 2011).
Artemisinin is the major bioactive compound, which is rich in mono- and sesquiterpenes, and is a new class of potential antimalarial drug used throughout the globe. The combination therapies of artemisinin are considered to be the best treatment for Plasmodium falciparum malaria (He et al. 2009). Apart from antimalarial activity, the oil has antibacterial and antifungal (Bilia et al. 2014), immunosuppressive, anti-inflammatory, antioxidant (Cavar et al. 2012), and antiviral (Alesaeidi and Miraj 2016) activities. A. annua has also been studied against diabetes, heart diseases, arthritis, eczema, and cancer.
In vitro and in vivo studies on artemisinin have given good evidence of its anticancer activity. The mechanism of action of its antineoplastic activity has also been exhaustively studied and reviewed. Artemisinin is described to induce oxidative stress and nitric oxide production; cause DNA damage and repair; induce apoptosis, autophagy, and necrosis; and inhibit angiogenesis and mitogen-activated protein kinases (MAPK) pathway, metastatic pathway, etc. (Efferth 2017). Phase I and II clinical trials for the molecule have also been done; but hepatotoxicity caused by artemisinin combination therapy is a limitation as of now. The anticancer activity of artemisinin has been studied in breast cancer, in lung cancer, and in prostate carcinoma (Lai and Singh 2006; Sun et al. 2014; Michaelsen et al. 2015).

Drugs for treatment of malaria

Artemisinin is the drug for the treatment of malaria with the most excellent efficacy, being a kind of sesquiterpene lactone containing peroxide group extracted from the traditional Chinese medicine Artemisia annua. It is characterized with high efficiency, rapid efficacy, clearing summer-heat, clearing deficiency heat, protozoa-killing effect and low toxicity. Currently, the efficacy of the artemisinin-based combination therapy (ACT) for the treatment of malaria worldwide has reached over 90%. ACT has been already widely applied to the treatment of malaria in many countries around the world.
It has a strong and rapid killing effect on the erythrocytic stage of plasmodium, being able to rapidly control the clinical seizures and symptoms. Meanwhile, it also has prominent efficacy in the treatment of chicken coccidiosis, Mycoplasma Suis, toxoplasmosis, weakness and fever, damp heat jaundice, tertian malaria, falciparum malaria, cerebral malaria and chloroquine malaria.
Artemisinin was first successfully developed by Chinese scientists, being effective monomer originated from the folk malaria-treatment herbs Artemisia annua. China is one of the major resource countries for the growth of such plants. The demands for research and development originated from the Vietnam War in 1960s when Malaria parasites had been resistant to special drug chloroquine at that time. In Vietnam War, many soldiers are not killed in the war, but instead died of malaria.
Because of the presence of artemisinin resistance in the border areas of Cambodia and Thailand, the World Health Organization advocates the use of combinations rather than monomeric formulation. In this environment, the world's first artemisinin-based compound antimalarial drug-compound artemether has been successfully developed in China. However, due to the lack of attention on the importance of intellectual property of Chinese pharmaceutical companies, currently in the world, only Novartis Company has the authority of foreign selling of artemether compound that has been recognized by the World Health Organization. The Novartis Company has offered the drug to the WHO at the cost price, wining the wide acclaim from international community. However, in this trade war, China can only play a role of major drug producing countries.

Chemical properties

It appears as colorless needle crystal with a melting point being156-157 °C. It is easily soluble in chloroform, acetone, ethyl acetate and benzene, being soluble in methanol, ethanol and insoluble in water.

Uses

Artemisia annua is used as antimalarial drugs. Clinical application has shown that artemisinin and its derivatives have special effects on treating the malaria and falciparum malaria, especially artemisinin which has stronger killing effect on Plasmodium falciparum intracellular phorozoon than other artemisinin drugs, characterized by high efficiency, rapid efficacy, low toxicity and no cross-resistance with chloroquine, etc. It can be not only used for treatment, but also for emergency treatment. It is applicable to a variety of malaria such as falciparum malaria, vivax malaria, anti-chloroquine malaria and cerebral malaria, including dangerous type.
The most notable drug is dihydroartemisinin and its tablets. This drug has its antimalarial effect be 10 times as strong as artemisinin with the recurrence rate of only 1.95%, thus having been rated as China's top ten scientific and technological achievements in 1992. Artemisinin and its derivatives not only are excellent antimalarial drugs, but also have potentially attractive prospect in the treatment of other diseases. Animal experiments have found that artemisinin treatment of Clonorchis sinensis can achieve a rate of pest control being up to 100%; treatment of animal schistosomiasis can achieve a pest control rate of 33.8-99.3%. Application of artemisinin treatment of discoid lupus erythematosus can achieve a total effective rate of 90%. Its efficacy in the treatment of dengue fever is significantly better than morphine biguanide and other western medicines. Immunologists have also found that artemisinin can significantly improve the lymphocyte transformation rate and enhance the immune function of antibodies. People haven’t found toxic effect of this product on the heart, liver and kidney. People haven’t observed any significant side effects in clinical practice.

Production method

It can be extracted from the leaves of Artemisia annua L. (Compositae). In addition to artemisinin, China also produces both artemether and sodium artemisinin.

Category

 Toxic substances

Toxic grading

 Poisoning

Acute toxicity

Intraperitoneal-rat LD50: 2571 mg/kg; Abdominal-mouse LD50: 1558 mg/kg

Flammability and Hazardous properties

 it is combustible with combustion producing irritating fumes

Storage and transportation characteristics

Ventilation, low temperature and dry;

Fire extinguishing agent

dry powder, foam, sand, carbon dioxide, mist water

References

1. Luo XD, Shen CC (1987). The chemistry, pharmacology and clinical applications of qinghaosu (artemisinin) and its derivatives. Med Res Rev, 7, 29–52.
2. Klayman DL (1985). Qinghaosu (artemisinin): an antimalarial drug from China. Science, 228, 1049–1055.
3. Zhang F, Gosser Jr. DK, Meshnick SR (1992). Hemin-catalyzed decomposition of artemisinin (qinghaosu). Biochem Pharmacol, 43, 1805–1809.
4. Meshnick SR, Yang YZ, Lima V, Kuypers F, Kamchonwongpaisan S, Yuthavong Y (1993). Irondependent free radical generation from the antimalarial artemisinin (qinghaosu). Antimicrob Agents Chemother, 37, 1108–1114.
5. The role of artemisinin and its derivatives in the current treatment of malaria (1994–1995). Report of an informal consultation convened by WHO, 27–29 September, 1993. (Geneva: World Health Organization).
6. Hien TT, White NJ (1993). Qinghaosu. Lancet, 341, 603–608.
7. Brewer TG, Grate SJ, Peggins JO, Weina PJ, Petras JM, Levine BS, Heiffer MH, Schuster BG (1994). Fatal neurotoxicity of arteether and artemether. Am J Trop Med Hyg, 51, 251–259.
 

Description

Artemisinin, a sesquiterpene isolated from a traditional Chinese remedy (quinghao), is useful in the treatment of Fafciparum malaria, including infections caused by chloroquine resistant strains. It is reported to clear parasitemia quicker than i.v. quinine, and is effective in cerebral malaria.

Chemical Properties

Crystalline Solid

Originator

Ping Hau Sau Res. Group (China)

Uses

Active antimalarial constituent of the tradional Chinese medicinal herb Artemisia annua L., Compositae, which has been known for almost 2000 years as Qinghao. Antimalarial

Uses

An antimalarial agent that inhibits VEGF expression and NOS2.

Definition

ChEBI: A sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria.

Antimicrobial activity

Artemisinins are active against the erythrocytic and gametocyte stages of chloroquine-sensitive and chloroquine-resistant strains of P. falciparum and other malaria parasites. Two anomers of artemether are produced on synthesis, α-artemether and β-artemether, of which the latter has higher antimalarial activity. Activity against the protozoa Tox. gondii and Leishmania major and the helminth Schistosoma mansoni has been demonstrated in experimental models.

Acquired resistance

Resistance caused, for example, by changes in the plasmodial endoplasmic reticulum ATPase has been shown in experimental models. There have been clinical reports of reduced susceptibility to treatment with artesunate in Cambodia.

General Description

The artemisinin series are the newest of the antimalarialdrugs and are structurally unique when comparedwith the compounds previously and currently used. Theparent compound, artemisinin, is a natural product extractedfrom the dry leaves of Artemisia Annua (sweetwormwood). The plant has to be grown each year fromseed because mature plants may lack the active drug. The growing conditions are critical to maximize artemisininyield. Thus far, the best yields have been obtained fromplants grown in North Vietnam, Chongqing province inChina, and Tanzania.

Pharmaceutical Applications

A sesquiterpene peroxide derived from A. annua, chiefly used in the form of artemether, the methyl ester synthesized from dihydroartemisinin, or artesunate, the water-soluble hemisuccinate. Formulated for administration by the oral, intramuscular or intrarectal routes; artesunate can also be given intravenously.

Pharmaceutical Applications

Artemisinin (qinghaosu), a compound derived from a plant used in traditional Chinese medicine, Artemisia annua, has been used extensively in East Asia and Africa for the treatment of malaria. This drug, and derivatives that have higher intrinsic antimalarial activity (artesunate, artemether and arteether), have replaced quinine as a treatment of falciparum malaria in many countries, normally in combination with other antimalarials. A semisynthetic derivative, artemisone, which has higher efficacy than artesunate and lower toxicity potential, is in development. Artemisinin and its derivatives also show broad antiprotozoal, anthelmintic and antiviral activities.
The novel structure, containing an endoperoxide bridge, has stimulated the development of semisynthetic and synthetic dioxane, trioxane and tetroxane compounds with activity against Plasmodium spp. and Schistosoma spp. Some of these synthetic trioxalanes are now in clinical development with Medicines for Malaria Venture and other organizations.

Biological Activity

Antimalarial agent; interacts with heme to produce carbon-centred free radicals, causes protein alkylation and damages parasite microorganelles and membranes. Also selectively inhibits the P-type ATPase (PfATP6) of Plasmodium falciparum (K i ~ 150 nM). Displays antiangiogenic effects in mouse embryonic stem cell-derived embryoid bodies.

Pharmacokinetics

Oral absorption: Incomplete
Cmax 500 mg oral: 0.4 mg/L after 1.8 h
Plasma half-life (dihydroartemisinin): 40–60 min
Volume of distribution: c. 0.25 L/kg
Plasma protein binding (artemether): 77%
Artemisinins are concentrated by erythrocytes and are rapidly hydrolyzed to dihydroartemisinin. They are hydroxylated by cytochromes 2B6, 2C19 and 3A4; the derivatives induce this metabolism. After injection, peak plasma concentrations are reached within 1–3 h, when levels of dihydroartemisinin are included. The elimination half-life of intravenous artesunate is <30 min; artemether appears to have a much longer half-life (4–11 h).

Clinical Use

Malaria (including cerebral malaria), in combination with other antimalarials

Side effects

A few toxic effects in addition to drug-induced fever and a reversible decrease in reticulocyte counts have been reported. High-dose studies in animal models show neurotoxicity and reproducible dose-related neuropathic lesions; dihydroartemisinin is a toxic metabolite but the precise causes of neurotoxicity are not clear. Embryotoxicity of artemisinin and derivatives has been reported in rodent and primate models, probably due to depletion of erythroblasts.

Artemisinin Preparation Products And Raw materials

Raw materials

Preparation Products


Artemisinin Suppliers

Global( 363)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 Abel@chembj.com CHINA 3217 55
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 22043 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20786 55
Hubei XinRunde Chemical Co., Ltd.
+8615102730682; +8618874586545
02783214688 bruce@xrdchem.cn CHINA 552 55
Nanjing Finetech Chemical Co., Ltd.
025-85710122 17714198479
025-85710122 sales@fine-chemtech.com CHINA 894 55
Chengdu Biopurify Phytochemicals Ltd.
18080483897
maggie@biopurify.com CHINA 2238 58
Chemwill Asia Co.,Ltd.
86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 24118 58
Hubei Jusheng Technology Co.,Ltd.
86-188-71490254
peter@hubeijusheng.com CHINA 20229 58
Casorganics US Corp
+17326109938
sales@casorganics.com CHINA 140 58
QUALITY CONTROL CHEMICALS INC.
(323) 306-3136
(626) 453-0409 orders@qcchemical.com United States 8430 58

View Lastest Price from Artemisinin manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2019-04-22 Artemisinin
63968-64-9
US $10.00 / Kg 1Kg 99% 5000kg/month Hebei Chisure Biotechnology Co., Ltd.
2018-07-26 Artemisinin
63968-64-9
US $100.00 / KG 1KG 99% Customized career henan chemical co
2018-04-11 artemisinin
63968-64-9
US $10.00 / KG 10G 99% 10MT Hubei XinRunde Chemical Co., Ltd.

63968-64-9(Artemisinin)Related Search:


  • Artemisinin, 98%, from Artemisia annua
  • qinghosu
  • [3r-(3r,5as,6s,8as,9r,10r,12s,12ar**)]-decahydro-3,6,9-trimethyl-3,12-epoxy-12h-pyrano[4,3-j]-1,2-benzodioxepin-10-one
  • ALPHA BETA ARTEMISININ
  • ARTEMISINE
  • ARTEMISIA P E
  • ARTEMISIA ANNUA
  • ARTEMISININE
  • ARTEMISININ
  • ARTEANNUIN
  • ARTEANUIN
  • SWEET WORMWOOD
  • 3,12-epoxy-12h-pyranol(4,3-j)-1,2-benzodioxepin-10(3h)-one,octahydro-3,6,9-tri
  • artemisiaannual.,extract
  • QINGHAOSU
  • QINGHAOSA
  • (3-alpha,5a-beta,6-beta,8a-beta,9-alpha,12-beta,12ar*)-(+)-methyl
  • Artemisia annual L Ext.
  • Arteannuin99%
  • Artemesinine98%
  • Quinghaosu
  • Astemisinin
  • (3R,5aS,6R,8aS,9R,12S,12aR)-Octahydro-3,6,9-trimethyl-3,12-epox12H-pyrano[4,3-j]-1,2-benzodioxepin-10(3H)-one
  • ArteMisinin, 98%, froM ArteMisia annua L.
  • ArteMisinin, froM ArteMisia annua
  • 3,12-Epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10(3H)-one, octahydro-3,6,9-trimethyl-, (3R,5aS,6R,8aS,9R,12S,12aR)-
  • Artemisinin Qinghaosu/ [3R-(3R,5aS,6S,8aS,9R,10R,12S,12aR**)]-Decahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10-one
  • Artemisinin, 99%, from Artemisia annua Linn
  • huanghuahaosu
  • octahydro-3,6,9-trimethyl-3,12-epoxy-12h-pyrano(4,3-j)-1,2-benzodioxepin-10(
  • qinghausau
  • qinghausu
  • QHS
  • ARTEMISININ 99%
  • [3r-(3r,5as,6s,8as,9r,10r,12s,12ar)]-decahydro-3,6,9-trimethyl-3,12-epoxy-12h-pyrano[4,3-j]-1,2-benzodioxepin-10-one
  • ARTEMISININ (QINGHAOSU)
  • (+)-Arteannuin
  • ARTEMETHER
  • 3,13-Epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10(3H)one,(ctahydro-3,6,9-trimethyl-,[3R-(3α,5αβ,6β,8αβ,9α,12β,12αR*)]-
  • Arteannuin, Qinghaosu
  • Artemisine,Artemisinin,Arteannuin
  • 3,12-Epoxy-12H-pyranol(4,3-j)-1,2-benzodioxepin-10(3H)-one, octahydro-3,6,9-trimethyl-, (3- alpha,5a-beta,6-beta,8a-beta,9-alpha,12-beta,12aR*)-(+)
  • Octahydro-3,6,9-trimethyl-3,12-epoxy-12H-pyrano(4,3-j)-1,2-benzodioxepin-10(3H)-one
  • (3R,5aS,6R,8aS,9R,12S,12aR)-Octahydro-3,6,9-trimethyl-3 ,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxepin-10(3H)-one
  • Artemisinine,98%
  • Active Pharmaceutical Ingredients
  • Miscellaneous Natural Products
  • Others (Antibiotics for Research and Experimental Use)
  • Antibiotics for Research and Experimental Use
  • Biochemistry
  • Standard extract
  • Natural Plant Extract
  • Intermediates & Fine Chemicals
  • 63968-64-9
  • 63968-63-9
  • C15H22O5
  • reference standards from Chinese medicinal herbs (TCM).
  • standardized herbal extract
Copyright 2017 © ChemicalBook. All rights reserved