Chinese Japanese Germany


Chemical Name:
CO2;r744;Cardice;DRY ICE;Dricold;Drikold;aerfixus;carbonica;Carbonice;after-damp
Molecular Formula:
Formula Weight:
MOL File:


Melting point:
−78.5 °C(lit.)
Boiling point:
vapor density 
1.52 (vs air)
vapor pressure 
56.5 atm ( 20 °C)
refractive index 
storage temp. 
At 20 °C and at a pressure of 101 kPa, 1 volume dissolves in about 1 volume of water.
colorless gas
Water Solubility 
mL CO2/100mL H2O at 760mm: 171 (0°C), 88 (20°C), 36 (60°C) [MER06]
Stable. Incompatible with chemically active metals, such as alkali metals.
CAS DataBase Reference
124-38-9(CAS DataBase Reference)
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
Safety Statements  9
RIDADR  UN 1013 2.2
WGK Germany  -
RTECS  FF6400000
HazardClass  2.2
PackingGroup  III
HS Code  28112100
Signal word: Warning
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H280 Contains gas under pressure; may explode if heated Gases under pressure Compressed gas
Liquefied gas
Dissolved gas
Warning P410+P403
Precautionary statements:
P410+P403 Protect from sunlight. Store in a well-ventilated place.

CARBON DIOXIDE price More Price(3)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 295108 Carbon dioxide ≥99.8% 124-38-9 227g $285 2018-11-13 Buy
Sigma-Aldrich 422606 Carbon-12C dioxide 13C-depleted 124-38-9 10l $327 2018-11-20 Buy
Sigma-Aldrich 422606 Carbon-12C dioxide 13C-depleted 124-38-9 25l $602 2018-11-20 Buy

CARBON DIOXIDE Chemical Properties,Uses,Production

Chemical Properties

Carbon dioxide,CO2, also known as carbonic anhydride and carbonic acid gas, is a colorless,odorless gas that liquifies at -65 °C(-86 OF) and solidifies in dry ice at -78.2 °C(-107 OF). It is soluble in water,alcohol, and most alkaline solutions. In a relatively slow reaction,carbon dioxide hydrates in water to become carbonic acid and is corrosive. In petroleum production, the velocity of the carbon dioxide gas can increase the corrosion rate to very high levels,with the presence of salts becoming unimportant. Carbon dioxide is used in preparing carbonated beverages, fire extinguishers, dry ice refrigerants,and as a raw material in the production of sodium carbonate and sodium bicarbonate using the Solvay procedure.

Chemical Properties

Carbon dioxide is a colorless, odorless, noncombustible gas.


Carbon Dioxide is a gas obtained during fermentation of glucose (grain sugar) to ethyl alcohol. it is used in pressure-packed foods as a propellant or aerating agent and is also used in the carbonation of beverages. it is released as a result of the acid carbonate reaction of leavening agents in baked goods to produce an increase in volume. as a solid, it is termed dry ice and is used for freezing and chilling.


ChEBI: A one-carbon compound with formula CO2 in which the carbon is attached to each oxygen atom by a double bond. A colourless, odourless gas under normal conditions, it is produced during respiration by all animals, fungi and microorganism that depend directly or indirectly on living or decaying plants for food.


In the carbonation of beverages; manufacture of carbonates; in fire prevention and extinction; for inerting flammable materials during manufacture, handling and transfer; as propellant in aerosols; as dry ice for refrigeration; to produce harmless smoke or fumes on stage; as rice fumigant; as antiseptic in bacteriology and in the frozen food industry. Supercritical or liquid CO2 used in extraction of caffeine and hops aroma; dry cleaning; metal degreasing; cleaning semiconductor chips; paint spraying; polymer modification. Environmentally benign alternative to potentially hazardous solvents in organic and polymer chemistry.

General Description

An odorless, white solid. Can cause damaging frostbite. Noncombustible and nontoxic. Liquefies at -109°F. Can asphyxiate by displacement of air. Used as a refrigerant.

Air & Water Reactions

Water soluble. Forms carbonic acid, a mild acid in water.

Reactivity Profile

Contact of very cold liquid/solid carbon dioxide with water may result in vigorous or violent boiling of the product and extremely rapid vaporization due to the large temperature differences involved. If the water is hot, there is the possibility that a liquid "superheat" explosion may occur. Pressures may build to dangerous levels if liquid gas contacts water in a closed container. With water forms weak carbonic acid in nonhazardous reaction. Dusts of magnesium, lithium, potassium, sodium, zirconium, titanium, and some magnesium-aluminum alloys, and heated aluminum, chromium, and magnesium when suspended in carbon dioxide are ignitable and explosive. This is especially true in the presence of strong oxidizers, such as peroxides. The presence of carbon dioxide in solutions of aluminum hydride in ether can cause violent decomposition on warming the residue, [J. Amer. Chem. Soc., 1948, 70, 877]. Dangers arising from the use of carbon dioxide in the fire prevention and extinguishing systems of confined volumes of air and flammable vapors are examined. The hazard associated with its use centers around the fact that large electrostatic discharges may be created that initiate explosion, [Quart. Saf. Summ., 1973, 44(1740, 10].


Solid damaging to skin and tissue; keep away from mouth and eyes. Asphyxia.

Health Hazard

Vapors may cause dizziness or asphyxiation without warning. Vapors from liquefied gas are initially heavier than air and spread along ground. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite.

Fire Hazard

Non-flammable gases. Containers may explode when heated. Ruptured cylinders may rocket.

Safety Profile

An asphpant. See discussion of simple asphyxiants under ARGON. Experimental teratogenic and reproductive effects. Contact of solid carbon dioxide snow with the skin can cause burns. Dusts of magnesium, zirconium, titanium, and some magnesium-aluminum alloys igmte and then explode in COa atmospheres. Dusts of aluminum, chromium, and manganese ignite and then explode when heated in CO2. Several bulk metals wlll burn in CO2. Reacts vigorously with (Al + Na2O2), Cs2O, Mg(C2H5)2, Li, (Mg + Na2O2), K, KHC, Na, Na2C2, NaK, Ti. CO2 fire extingushers can produce highly incendiary sparks of 5-1 5 mJ at 10-20 kV by electrostatic discharge. Incompatible with acrylaldehyde, aziridme, metal acetylides, sodium peroxide.

Potential Exposure

Gaseous Carbon dioxide is used to carbonate beverages; as a weak acid in the textile, leather, and chemical industries; in water treatment; and in the manufacture of aspirin and white lead; for hardening molds in foundries; in food preservation, in purging tanks and pipe lines; as a fire extinguisher, in foams; and in welding. Because it is relatively inert, it is utilized as a pressure medium. It is also used as a propellant in aerosols; to promote plant growth in green houses; it is used medically as a respiratory stimulant; in the manufacture of carbonates; and to produce an inert atmosphere when an explosive or flammable hazard exists. The liquid is used in fire extinguishing equipment; in cylinders for inflating life rafts; in the manufacturing of dry ice, and as a refrigerant. Dry ice is used primarily as a refrigerant. Occupational exposure to carbon dioxide may also occur in any place where fermentation processes may deplete oxygen with the formation of carbon dioxide, e.g., in mines, silos, wells, vats, ships’ holds, etc.

First aid

If dry ice gets into the eyes, get medical attention. If this chemical contacts the skin, get medical attention for frostbite. If a person breathes in large amounts of this chemical, move the exposed person to fresh air at oncend perform rescue breathing and CPR if heart action has stopped. Transfer promptly to a medical facility. If frostbite has occurred, seek medical attention immediately; do NOT rub the affected areas or flush them with water. In order to prevent further tissue damage, do NOT attempt to remove frozen clothing from frostbitten areas. If frostbite has NOT occurred, immediately and thoroughly wash contaminated skin with soap and water. Cylinders must be transported in a secure upright position, in a wellventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.


Carbon dioxide (UN1013, UN2187), Hazard Class: 2.2; Labels: 2.2-Nonflammable compressed gas. Dry ice (UN1845), Hazard class 9 is considered a “miscellaneous hazardous material” and does not require a label. The gas and refrigerated liquid fall in Hazard Class 2.2 and there is no Packing Group; solid, dry ice falls in Hazard Class 9. Solid, dry ice carries the symbol “AW.” The letter “A” restricts the application of requirements of this subchapter to materials offered or intended for transportation by aircraft, unless the material is a hazardous substance or a hazardous waste. The letter “W” restricts the application of requirements of this subchapter to materials offered or intended for transportation by vessel, unless the material is a hazardous substance or a hazardous waste. Cylindersmust be transported in a secure upright position, in a wellventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

Purification Methods

Pass the gas over CuO wire at 800o to oxidise CO and other reducing impurities (such as H2), then over copper dispersed on Kieselguhr at 180o to remove oxygen. Drying it at -78o removes the water vapour. Final purification is by vacuum distillation at liquid nitrogen temperature to remove non-condensable gases [Anderson et al. J Chem Soc 3498 1962]. Sulfur dioxide contaminant can be removed at 450o using silver wool combined with a plug of platinised quartz wool. Halogens are removed by using Mg, Zn or Cu, heated to 450o. [Glemsner in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 647 1963.]


The substance decomposes on heating above 2000C producing toxic carbon monoxide. Reacts violently with strong bases and alkali metals. Various metal dusts from chemically active metals, such as magnesium, zirconium, titanium, aluminum, chromium, and manganese are ignitable and explosive when suspended and heated in carbon dioxide.

Waste Disposal

Return refillable compressed gas cylinders to supplier. Vent to atmosphere

CARBON DIOXIDE Preparation Products And Raw materials

Raw materials

Preparation Products


Global( 70)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Henan DaKen Chemical CO.,LTD.
+86-371-55531817 CHINA 22058 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20795 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32764 55
Energy Chemical 021-58432009 / 400-005-6266
021-58436166-800 China 44192 61
Shijiazhuang Sdyano Fine Chemical Co., Ltd. 13582355795
4000311741 China 5052 65
JinYan Chemicals(ShangHai) Co.,Ltd. 13817811078,021-50426030
86-021-50426522,50426273 China 10088 60
Secco work (Beijing) chemical technology co., LTD 010-69755668;
010-69755668 China 3626 54
Chengdu XiYa Chemical Technology Co., Ltd. 4008-626-111
028-84752058 China 9740 57
(CSR Factory)China Skyrun Industrial CO.,ltd Please Email China 12200 58
Hubei Jusheng Technology Co.,Ltd North:027-59599241,18871490274,QQ:1400878000 South:027-59599240,18871490354,QQ:1400868000
FAX:027-59599240 China 9924 58

124-38-9(CARBON DIOXIDE)Related Search:

Copyright 2017 © ChemicalBook. All rights reserved