Chinese Japanese Germany Korea


diethanolamine structure
Chemical Name:
DEA;dela;Diolamine;NCI-C55174;Dabco DEOA-LF;Diethanolamin;DETHANOLOMINE;DIETHYLOLAMINE;Iminodiethanol;DIETHANOLAMINE
Molecular Formula:
Formula Weight:
MOL File:

diethanolamine Properties

Melting point:
28 °C(lit.)
Boiling point:
268 °C
1.097 g/mL at 25 °C(lit.)
vapor density 
3.6 (vs air)
vapor pressure 
<0.98 atm ( 100 °C)
refractive index 
n20/D 1.477(lit.)
Flash point:
280 °F
storage temp. 
Store at RT
H2O: 1 M at 20 °C, clear, colorless
Viscous Liquid or Low Melting Solid
APHA: ≤15
Specific Gravity
11.0-12.0 (25℃, 1M in H2O)
8.88(at 25℃)
Mild ammoniacal; faint, fishy; characteristic.
explosive limit
Water Solubility 
λ: 260 nm Amax: 0.04
λ: 280 nm Amax: 0.02
Exposure limits
TLV-TWA 3 ppm (~13 mg/m3) (ACGIH).
Stable. Incompatible with carbon dioxide, strong acids, strong oxidizing agents. Deliquescent.
CAS DataBase Reference
111-42-2(CAS DataBase Reference)
NIST Chemistry Reference
EPA Substance Registry System
Ethanol, 2,2'-iminobis-(111-42-2)
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
  • NFPA
Hazard Codes  Xn
Risk Statements  22-38-41-48/22
Safety Statements  26-36/37/39-46
RIDADR  3267
WGK Germany  1
RTECS  KL2975000
Autoignition Temperature 689 °F
PackingGroup  II
HS Code  29221200
Hazardous Substances Data 111-42-2(Hazardous Substances Data)
Toxicity LD50 orally in rats: 12.76 g/kg (Smyth)
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H302 Harmful if swallowed Acute toxicity,oral Category 4 Warning P264, P270, P301+P312, P330, P501
H315 Causes skin irritation Skin corrosion/irritation Category 2 Warning P264, P280, P302+P352, P321,P332+P313, P362
H318 Causes serious eye damage Serious eye damage/eye irritation Category 1 Danger P280, P305+P351+P338, P310
H373 May cause damage to organs through prolonged or repeated exposure Specific target organ toxicity, repeated exposure Category 2 Warning P260, P314, P501
H412 Harmful to aquatic life with long lasting effects Hazardous to the aquatic environment, long-term hazard Category 3 P273, P501
Precautionary statements:
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P273 Avoid release to the environment.
P280 Wear protective gloves/protective clothing/eye protection/face protection.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.

NFPA 704

Diamond Hazard Value Description
Flammability   1 Materials that require considerable preheating, under all ambient temperature conditions, before ignition and combustion can occur. Includes some finely divided suspended solids that do not require heating before ignition can occur. Flash point at or above 93.3 °C (200 °F). (e.g. mineral oil, ammonia)
Instability   0 Normally stable, even under fire exposure conditions, and is not reactive with water (e.g. helium,N2)

(NFPA, 2010)

diethanolamine price More Price(26)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 16957 Diethanolamine analytical standard 111-42-2 1ml-f $21.9 2018-11-13 Buy
Sigma-Aldrich 1192808 Diethanolamine United States Pharmacopeia (USP) Reference Standard 111-42-2 3ml $401 2018-11-13 Buy
TCI Chemical I0008 Diethanolamine >99.0%(GC)(T) 111-42-2 25g $13 2018-11-22 Buy
TCI Chemical I0008 Diethanolamine >99.0%(GC)(T) 111-42-2 500g $23 2018-11-22 Buy
Alfa Aesar A13389 Diethanolamine, 99% 111-42-2 250g $19.6 2018-11-13 Buy

diethanolamine Chemical Properties,Uses,Production

Chemical Properties

solid or viscous liquid with an amine odour

Chemical Properties

Ethanolamines can be detected by odor as low as 23 ppm. Monoethanolamine is a colorless, viscous liquid or solid (below 111C) with an unpleasant, ammonialike odor

Chemical Properties

The USP32–NF27 describes diethanolamine as a mixture of ethanolamines consisting largely of diethanolamine. At about room temperature it is a white, deliquescent solid. Above room temperature diethanolamine is a clear, viscous liquid with a mildly ammoniacal odor.


daisy extract (Bellis perennis) is said to be tonic, astringent, and skin conditioning. Daisy was a component in a popular fourteenthcentury wound ointment. This application continued through the centuries, using daisy alone or in combination with oxeye daisy. The flowers and leaves are found to have a certain amount of oil and ammoniacal salts.


Diethanolamine is used in the production ofsurface-active agents and lubricants for thetextile industry; as an intermediate for rubberchemicals; as an emulsifier; as a humectantand softening agent; as a detergent in paints,shampoos, and other cleaners; and as anintermediate in resins and plasticizers.


Diethanolamine similar to triethanolamine (T775580) is used as a surfactant. It also has the potential to be a corrosion inhibitor by means of chemisorption.


To scrub gases as indicated under ethanolamine. Diethanolamine can be used with cracking gases and coal or oil gases which contain carbonyl sulfide that would react with monoethanolamine. As rubber chemicals intermediate. In the manufacture of surface active agents used in textile specialties, herbicides, petroleum demulsifiers. As emulsifier and dispersing agent in various agricultural chemicals, cosmetics, and pharmaceuticals. In the production of lubricants for the textile industry. As humectant and softening agent. In organic syntheses.


ChEBI: A member of the class of ethanolamines that is ethanolamine having a N-hydroxyethyl substituent.

Production Methods

Diethanolamine is produced with monoethanolamine and triethanolamine by ammonolysis of ethylene oxide; diethanolamine is then separated by distillation (Mullins 1978). In 1984, 166.2 million pounds of diethanolamine were produced in the United States (USTIC 1985).

Production Methods

Diethanolamine is prepared commercially by the ammonolysis of ethylene oxide. The reaction yields a mixture of monoethanolamine, diethanolamine, and triethanolamine which is separated to obtain the pure products.

General Description

Oily colorless liquid or solid white crystals. Slight rotten fish or ammonia odor. Denser than water.

Air & Water Reactions

Water soluble.

Reactivity Profile

2,2'-Iminodiethanol is an aminoalcohol. Amines are chemical bases. They neutralize acids to form salts plus water. These acid-base reactions are exothermic. The amount of heat that is evolved per mole of amine in a neutralization is largely independent of the strength of the amine as a base. Amines may be incompatible with isocyanates, halogenated organics, peroxides, phenols (acidic), epoxides, anhydrides, and acid halides. Flammable gaseous hydrogen is generated by amines in combination with strong reducing agents, such as hydrides. 2,2'-Iminodiethanol is hygroscopic. 2,2'-Iminodiethanol may be sensitive to exposure to air and light. 2,2'-Iminodiethanol can react with oxidizing materials, acids, CO2, copper alloys, aluminum, zinc, galvanized iron and copper.

Health Hazard

Irritation of eyes and skin. Breathing vapors may cause coughing, a smothering sensation, nausea, headache.

Health Hazard

The estimated fatal dose of diethanolamine in humans is 20 g (Dreisbach 1980). Human exposure to ethanolamines include oral exposure to non-standard foods and ethical drugs, dermal exposure to cosmetics, proprietary drugs, and adhesives and sealants, and inhalation exposure to adhesives, sealants, and cutting fluids. In a safety assessment report on ethanolamine, diethanolamine, and triethanolamine, it was concluded that these chemicals are safe in cosmetic formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin (Beyer et al 1983). The concentration of the three ethanolamines in cosmetic formulations should not exceed 5% in products intended for prolonged contact with the skin. In addition, diethanolamine should not be used in products containing N-nitrosating agents, since it may be nitrosated to form Af-nitrosodiethanolamine, a liver and nasal cavity carcinogen (Lijinsky et al 1980; Preussmann et al 1982).

Health Hazard

The irritant action of diethanolamine on theeyes can be severe. Direct contact of thepure liquid can impair vision. Irritation onthe skin may be mild to moderate. Theacute oral toxicity of this compound waslow in test animals. The toxic symptomsinclude somnolence, excitement, and musclecontraction.
LD50 value, oral (mice): 3300 mg/kg
The vapor pressure of diethanolamine isnegligibly low (<0.01 torr at 20°C (68°F)).At ordinary temperature, this compoundshould not cause any inhalation hazard. Themists, fumes, or vapors at high temperatures,however, can produce eye, skin, and respiratory tract irritation.
In contrast to monoethanolamine, dieth anolamine administered to mice at 1125 mg/kg/day caused no change in maternal mortality, litter size, or percentage survival of thepups (Environmental Health Research andTesting 1987).

Fire Hazard

Flash Point (°F): 305 ℃; Flammable Limits in Air (%): 1.6 (calc.) -9.8 (est); Fire Extinguishing Agents: Water, alcohol foam, carbon dioxide, dry chemical; Fire Extinguishing Agents Not To Be Used: Addition of water may cause frothing; Special Hazards of Combustion Products: Irritating vapors are generated when heated; Behavior in Fire: Not pertinent; Ignition Temperature (°F): 1224; Electrical Hazard: Not pertinent; Burning Rate: 0.74 mm/min.

Fire Hazard

Special Hazards of Combustion Products: Irritating vapors are generated when heated.

Chemical Reactivity

Reactivity with Water : No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Flush with water; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

Pharmaceutical Applications

Diethanol amine is primarily used in pharmaceutical formulations as a buffering agent, such as in the preparation of emulsions with fatty acids. In cosmetics and pharmaceuticals it is used as a pH adjuster and dispersant.
Diethanolamine has also been used to form the soluble salts of active compounds, such as iodinated organic acids that are used as contrast media. As a stabilizing agent, diethanolamine prevents the discoloration of aqueous formulations containing hexamethylenetetramine-1,3-dichloropropene salts.
Diethanolamine is also used in cosmetics.

Industrial uses

Diethanolamine undergoes reactions characteristic of secondary amines and of alcohols. Two industrially important reactions of the ethanolamines involve reaction with carbon dioxide or hydrogen sulfide to yield water soluble salts, and reaction with long chain fatty acids to form neutral ethanolamine soaps (Mullins 1978). Substituted ethanolamine compounds, such as soaps, are used extensively as emulsifiers, thickeners, wetting agents, and detergents in cosmetic formulations (including skin cleaners, creams, and lotions) (Beyer et al 1983).
Diethanolamine is used as a dispersing agent in various agricultural chemicals, as an absorbent for acidic gases (hydrogen sulfide and carbon dioxide), as a humectant, as an intermediate in the synthesis of morpholine, as a surface-active agent in cutting fluids, as a corrosion inhibitor, as a component in textile specialty agents, and as a secondary vulcanization accelerator in the rubber industry. Diethanolamine is also used in cleaners and pharmaceutical ointments, in polyurethane formulations, in herbicides, and in a variety of organic syntheses (Beyer et al 1983; Mullins 1978; Windholz 1983). Diethanolamine is permitted in articles intended for use in the production, processing, or packaging of food (CFR 1981), and is permitted as a secondary direct food additive from use in delinting cottonseed in the production of cottonseed oil or meal cake (Fed. Reg. 1982). Because of the wide industrial and consumer uses, large amounts of this chemical are discharged into water and sewage in an unaltered form (Yordy and Alexander 1981).

Contact allergens

Diethanolamine is contained in many products, as a metalworking fuid. Traces may exist in other etha- nolamine-containing fuids.

Safety Profile

Poison by intraperitoneal route. Moderately toxic by ingestion and subcutaneous routes. Mildly toxic by skin contact. A severe eye and mild skin irritant. Experimental reproductive effects. Combustible when exposed to heat or flame; can react with oxidizing materials. To fight fire, use alcohol foam, water, Co2, dry chemical. When heated to decomposition it emits toxic fumes such as NOx. See also AMINES.


Diethanolamine is used in topical and parenteral pharmaceutical formulations, with up to 1.5% w/v being used in intravenous infusions. Experimental studies in dogs have shown that intravenous administration of larger doses of diethanolamine results in sedation, coma, and death.
Animal toxicity studies suggest that diethanolamine is less toxic than monoethanolamine, although in rats the oral acute and subacute toxicity is greater. Diethanolamine is said to be heptacarcinogenic in mice and has also been reported to induce hepatic choline deficiency in mice.
Diethanolamine is an irritant to the skin, eyes, and mucous membranes when used undiluted or in high concentration. However, in rabbits, aqueous solutions containing 10% w/v diethanolamine produce minor irritation. The lethal human oral dose of diethanolamine is estimated to be 5–15g/kg body-weight.
The US Cosmetic Ingredient Review Expert Panel evaluated diethanolamine and concluded that it is safe for use in cosmetic formulations designed for discontinuous, brief use followed by thorough rinsing from the surface of the skin. In products intended for prolonged contact with the skin, the concentration of ethanolamines should not exceed 5%. Diethanolamine should not be used in products containing N-nitrosating agents.
LD50 (guinea pig, oral): 2.0g/kg
LD50 (mouse, IP): 2.3g/kg
LD50 (mouse, oral): 3.3g/kg
LD50 (rabbit, skin): 12.2g/kg
LD50 (rat, IM): 1.5g/kg
LD50 (rat, IP): 0.12g/kg
LD50 (rat, IV): 0.78g/kg
LD50 (rat, oral): 0.71g/kg
LD50 (rat, SC): 2.2g/kg

Potential Exposure

Monoethanolamine is widely used in industry for scrubbing acid gases and in production of detergents and alkanolamide surfactants; to remove carbon dioxide and hydrogen from natural gas, to remove hydrogen sulfide and carbonyl sulfide; as an alkaline conditioning agent; as an intermediate for soaps, detergents, dyes, and textile agents. Diethanolamine is an absorbent for gases; a solubilizer for 2,4- dichlorophenoxyacetic acid (2,4-D); and a softener and emulsifier intermediate for detergents. It also finds use in the dye and textile industry. Triethanolamine is used as plasticizers, neutralizer for alkaline dispersions; lubricant additive; corrosion inhibitor; and in the manufacture of soaps, detergents, shampoos, shaving preparations; face and hand creams; cements, cutting oils, insecticides, surface active agents; waxes, polishes, and herbicides.

First aid

If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Speed in removing material from skin is of extreme importance. Shampoo hair promptly if contaminated. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit


Treatment of Wistar or Sherman rats with diethanolamine caused increases in the formation of hepatic phospholipids (Artom et al 1949). In addition, dietary administration led to incorporation of ethanolamine into hepatic phospholipids (Artom et al 1949), and repeated oral administration of diethanolamine in drinking water (one to three wk) at a dose of 320 mg/kg/d was found to reduce the level of incorporation of ethanolamine and choline into hepatic and renal phospholipids in Sprague-Dawley rats (Barbee and H?rtung 1979b).
Dermal absorption of diethanolamine is suggested to occur in rats since Nnitrosodiethanolamine was excreted in the urine of male Sprague-Dawley rats which had been administered diethanolamine by dermal application and given nitrite in their drinking water (Preussman et al 1981).


Diethanolamine is hygroscopic and light- and oxygen-sensitive; it should be stored in an airtight container, protected from light, in a cool, dry place.


UN2491 Ethanol amine or Ethanolamine solutions, Hazard class: 8; Labels: 8-Corrosive material.

Purification Methods

Fractionally distil the amine twice, then fractionally crystallise it from its melt. Its solubility in H2O is 10% at 20o. [Perrin & Dempsey Buffers for pH and Metal Ion Control Chapman & Hall, London 1974, Beilstein 4 H 283, 4 II 729, 4 III 689, 4 IV 1514.]


Monoethanolamine: This chemical is a medium-strong base. Reacts violently with strong oxidizers, acetic acid; acetic anhydride; acrolein, acrylic acid; acrylonitrile, cellulose nitrate; chlorosulfonic acid; epichlorohydrin, hydrochloric acid; hydrogen fluoride; mesityl oxide; nitric acid; oleum, sulfuric acid; β-propiolactone; and vinyl acetate. Reacts with iron. May attack copper, aluminum, and their alloys, and rubber. Di-isomer: Oxidizers, strong acids; acid anhydrides; halides. Reacts with CO2 in the air. Hygroscopic (i.e., absorbs moisture from the air). Corrosive to copper, zinc, and galvanized iron (di-). The aqueous solution is a medium strong base. Attacks copper, zinc, aluminum, and their alloys.


Diethanolamine is a secondary amine that contains two hydroxy groups. It is capable of undergoing reactions typical of secondary amines and alcohols. The amine group usually exhibits the greater activity whenever it is possible for a reaction to take place at either the amine or a hydroxy group.
Diethanolamine will react with acids, acid anhydrides, acid chlorides, and esters to form amide derivatives, and with propylene carbonate or other cyclic carbonates to give the corresponding carbonates. As a secondary amine, diethanolamine reacts with aldehydes and ketones to yield aldimines and ketimines. Diethanolamine also reacts with copper to form complex salts. Discoloration and precipitation will take place in the presence of salts of heavy metals.

Waste Disposal

Controlled incineration; incinerator equipped with a scrubber or thermal unit to reduce nitrogen oxides emissions

Regulatory Status

Included in the FDA Inactive Ingredients Database (IV infusions, ophthalmic solutions, and topical preparations). Included in medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

diethanolamine Preparation Products And Raw materials

Raw materials

Preparation Products

diethanolamine Suppliers

Global( 332)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Hebei Guanlang Biotechnology Co., Ltd.
+86-0311-66562153 whatsapp +8615203118427
+86-0311-66562153 CHINA 407 50
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32457 55
Xiamen AmoyChem Co., Ltd
+86 (0)592-605 1114 CHINA 6374 58
Hubei Jusheng Technology Co.,Ltd.
86-188-71490254 CHINA 20095 58
Haihang Industry Co.,Ltd
+86 531 8582 1093 CHINA 4669 58
Hebei Guanlang Biotechnology Co., Ltd.
+8619930501651 CHINA 923 58
Hebei Chisure Biotechnology Co., Ltd.
+8613292893290 CHINA 1020 58
career henan chemical co
+86-371-86658258 CHINA 19923 58
Univar Chemicals (Shanghai) Co., Ltd. 021-61932772 13012862996
021-60932700 China 295 58
Shanghai Aladdin Bio-Chem Technology Co.,LTD 021-20337333/400-620-6333
021-50323701 China 24991 65

View Lastest Price from diethanolamine manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2018-12-18 diethanolamine
US $1.00 / kg 1kg 99% Customized career henan chemical co
2019-04-24 diethanolamine
US $10.00 / kg 1kg 99% 500tons/month Hebei Chisure Biotechnology Co., Ltd.

diethanolamine Spectrum

111-42-2(diethanolamine)Related Search:

Copyright 2017 © ChemicalBook. All rights reserved