ChemicalBook
Chinese Japanese Germany

Aniline

Description Uses Derivatives Reaction Production Reduction of nitrobenzene with hydrogen Hazards
Aniline
Aniline
CAS No.
62-53-3
Chemical Name:
Aniline
Synonyms
Anilin;Anyvim;Kyanol;Anilina;blueoil;ci76000;ANILINE;Benzidam;Blue Oil;ai3-03053
CBNumber:
CB7169544
Molecular Formula:
C6H7N
Formula Weight:
93.13
MOL File:
62-53-3.mol

Aniline Properties

Melting point:
-6.2 °C
Boiling point:
184 °C(lit.)
Density 
1.022 g/mL at 25 °C(lit.)
vapor density 
3.22 (185 °C, vs air)
vapor pressure 
0.7 mm Hg ( 25 °C)
refractive index 
n20/D 1.586(lit.)
Flash point:
76 °C
storage temp. 
2-8°C
solubility 
water: soluble
form 
Liquid
pka
4.63(at 25℃)
color 
APHA: ≤250
Relative polarity
0.42
PH
8.8 (36g/l, H2O, 20℃)
explosive limit
1.2-11%(V)
Water Solubility 
36 g/L (20 ºC)
Merck 
14,659
BRN 
605631
Stability:
Stable. Incompatible with oxidizing agents, bases, acids, iron and iron salts, zinc, aluminium. Light sensitive. Combustible.
CAS DataBase Reference
62-53-3(CAS DataBase Reference)
NIST Chemistry Reference
Aniline(62-53-3)
EPA Substance Registry System
Benzenamine(62-53-3)
SAFETY
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
Hazard Codes  T,N,F
Risk Statements  23/24/25-40-41-43-48/23/24/25-50-68-48/20/21/22-39/23/24/25-11
Safety Statements  26-27-36/37/39-45-46-61-63-36/37-16
RIDADR  UN 1547 6.1/PG 2
WGK Germany  2
RTECS  BW6650000
8-9
TSCA  Yes
HazardClass  6.1
PackingGroup  II
Hazardous Substances Data 62-53-3(Hazardous Substances Data)
Toxicity LD50 orally in rats: 0.44 g/kg (Jacobson)
Symbol(GHS):
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H225 Highly Flammable liquid and vapour Flammable liquids Category 2 Danger P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H227 Combustible liquid Flammable liquids Category 4 Warning P210, P280, P370+P378, P403+P235,P501
H301 Toxic if swalloed Acute toxicity,oral Category 3 Danger P264, P270, P301+P310, P321, P330,P405, P501
H311 Toxic in contact with skin Acute toxicity,dermal Category 3 Danger P280, P302+P352, P312, P322, P361,P363, P405, P501
H317 May cause an allergic skin reaction Sensitisation, Skin Category 1 Warning P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H318 Causes serious eye damage Serious eye damage/eye irritation Category 1 Danger P280, P305+P351+P338, P310
H330 Fatal if inhaled Acute toxicity,inhalation Category 1, 2 Danger P260, P271, P284, P304+P340, P310,P320, P403+P233, P405, P501
H331 Toxic if inhaled Acute toxicity,inhalation Category 3 Danger P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H341 Suspected of causing genetic defects Germ cell mutagenicity Category 2 Warning P201,P202, P281, P308+P313, P405,P501
H351 Suspected of causing cancer Carcinogenicity Category 2 Warning P201, P202, P281, P308+P313, P405,P501
H370 Causes damage to organs Specific target organ toxicity, single exposure Category 1 Danger P260, P264, P270, P307+P311, P321,P405, P501
H372 Causes damage to organs through prolonged or repeated exposure Specific target organ toxicity, repeated exposure Category 1 Danger P260, P264, P270, P314, P501
H373 May cause damage to organs through prolonged or repeated exposure Specific target organ toxicity, repeated exposure Category 2 Warning P260, P314, P501
H400 Very toxic to aquatic life Hazardous to the aquatic environment, acute hazard Category 1 Warning P273, P391, P501
H410 Very toxic to aquatic life with long lasting effects Hazardous to the aquatic environment, long-term hazard Category 1 Warning P273, P391, P501
H412 Harmful to aquatic life with long lasting effects Hazardous to the aquatic environment, long-term hazard Category 3 P273, P501
Precautionary statements:
P201 Obtain special instructions before use.
P202 Do not handle until all safety precautions have been read and understood.
P210 Keep away from heat/sparks/open flames/hot surfaces. — No smoking.
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P261 Avoid breathing dust/fume/gas/mist/vapours/spray.
P264 Wash hands thoroughly after handling.
P264 Wash skin thouroughly after handling.
P270 Do not eat, drink or smoke when using this product.
P271 Use only outdoors or in a well-ventilated area.
P272 Contaminated work clothing should not be allowed out of the workplace.
P273 Avoid release to the environment.
P280 Wear protective gloves/protective clothing/eye protection/face protection.
P284 Wear respiratory protection.
P391 Collect spillage. Hazardous to the aquatic environment
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.
P307+P311 IF exposed: call a POISON CENTER or doctor/physician.
P370+P378 In case of fire: Use … for extinction.
P405 Store locked up.
P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Aniline price More Price(23)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 1.01261 Aniline 62-53-3 1EA $222 2017-11-08 Buy
Sigma-Aldrich 1036110 Aniline United States Pharmacopeia (USP) Reference Standard 62-53-3 250mg $1110 2017-11-08 Buy
TCI Chemical A0463 Aniline >98.0%(GC)(T) 62-53-3 500g $26 2017-11-08 Buy
Alfa Aesar 36238 Aniline, ACS, 99+% 62-53-3 1L $102 2017-11-08 Buy
Alfa Aesar 36238 Aniline, ACS, 99+% 62-53-3 100ml $22.7 2017-11-08 Buy

Aniline Chemical Properties,Uses,Production

Description

Aniline is the simplest primary aromatic amine and a compound formed by the substitution of a hydrogen atom in the benzene molecule with an amino group. It is colorless oil like flammable liquid with strong odor. When heated to 370 C, it is slightly soluble in water and soluble in ethanol, ether, chloroform and other organic solvents. It becomes brown in the air or under the sun. It can be distilled by steam. A small amount of zinc powder is added to prevent oxidation when it is distilled. The purified aniline can be added 10 ~ 15ppm NaBH4 to prevent oxidation deterioration. The solution of aniline is alkaline.
It is easy to produce salt when it reacts with acid. The hydrogen atoms on its amino groups can be substituted by alkyl or acyl groups to produce second or third grade aniline and acyl aniline. When substitution reaction occurs, the products of ortho and para substituted products are mainly produced. It reacts with nitrite to form diazonium salts, which can be used to produce a series of benzene derivatives and azo compounds.

Uses

Aniline is predominantly used as a chemical intermediate for dyes, drugs, explosives, plastics, and photographic and rubber chemicals. Many chemicals can be made from Aniline, including:

Derivatives

Many industrial feedstocks including N-alkylaniline, alkylaniline, o-nitroaniline, O-benzyl two amine, phenyl hydrazine, cyclohexanamine, etc is derived from Aniline. It can be used as the intermediates of the fungicide sodium p-aminobenzenesulfonate, SSEED, methyl sterilamine, sterilized amine, carbendazim, pyrazinyl, Benzalin, insecticide, pyrazino, pyrazino, pyrazino, pyrazinophos, herbicide methamidine, acetochlor, butachlor, cyclohexanone, imidazolinic acid etc.

Reaction

A primary aromatic amine, aniline is a weak base and forms salts with mineral acids such as aniline hydrochloride. PKb = 9.30, 0.2mol aqueous solution PH value 8.1. In acidic solution, nitrous acid converts aniline into a diazonium salt that is an intermediate in the preparation of a great number of dyes and other organic compounds of commercial interest. When aniline is heated with organic acids, it gives amides, called anilides, such as acetanilide from aniline and acetic acid. Monomethylaniline and dimethylaniline can be prepared from aniline and methyl alcohol. Catalytic reduction of aniline yields cyclohexylamine.
Various oxidizing agents convert aniline to quinone, azobenzene, nitrosobenzene, p-aminophenol, and the phenazine dye aniline black. Amino groups can undergo acylation, halogenation, alkylation and diazotization, and the presence of amino groups makes it nucleophiles capable of many nucleophilic reactions, and at the same time activates the electrophilic substitution on aromatic rings.

Production

Aniline was first obtained in 1826 by the destructive distillation of indigo. It is named because of the specific indigo-yielding plant “Indigofera anil” (Indigofera suffruticosa); In 1857, W.H.Jr. Perkin made aniline from reduction of nitrobenzene with iron filings using hydrochloric acid as catalyst which is still being used. At present, the methods of aniline production include catalytic vapor phase reduction of nitrobenzene with hydrogen, catalytic reaction of chlorobenzene and ammonolysis of phenol (Japan).
Before 1960s, aniline production was based on coal tar benzene, and now petroleum benzene has been used. At the end of 1990s, the world's aniline production capacity was above 2.5 million t. 50% of the aniline is used in the production of dye intermediates. About 25% aniline is used to produce isocyanate and its copolymers. The remaining (25%) is used for pesticides, gasoline antiknock agents, and photographic materials etc.

Reduction of nitrobenzene with hydrogen

Aniline is currently obtained by catalytic hydrogenation of nitrobenzene. The catalyst usually used is Cu-SiO2, which has good selectivity and can successfully reduce nitrobenzene to aniline. It is not easy to produce hydrogenation on benzene core. The reaction is carried out in a fluidized bed reactor. After purification, the hydrogen is heated by the heater to 350~400℃.
And then it is ushered in the evaporator, while nitrobenzene enters the evaporator from the upper trough, and contacts with the hot hydrogen to be gasified and overheat to 180~223 ℃.
The mixed gas enters from the bottom of the fluidized bed and contacts with the copper catalyst loaded on the silica gel in the fluidized bed. The generated crude aniline and water vapor are discharged from the top of the bed. Crude benzylamine is cooled and separated by a condenser, and then finished aniline is rectified.

Hazards

The toxicity of Aniline is LD50500mg/kg (dog oral administration), and is a common pollutant in the environment. Aniline has strong toxicity to blood and nerves. It can be absorbed by skin or by respiratory tract to cause toxicity.
The acute (short-term) and chronic (long-term) effects of aniline in humans consist mainly of effects on the lung, such as upper respiratory tract irritation and congestion. Chronic exposure may also result in effects on the blood. Human cancer data are insufficient to conclude that aniline is a cause of bladder tumors while animal studies indicate that aniline causes tumors of the spleen. EPA has classified aniline as a Group B2, probable human carcinogen.
Evidence reported by the National Institute for Occupational Safety and Health (NIOSH) clearly associates the occupational exposure to o-toluidine and aniline with an increased risk of bladder cancer among workers. The risk of bladder cancer is greatest among workers with possible and definite exposures to o-toluidine and aniline, and the risk increases with the duration of exposure.

Chemical Properties

Aniline,C6H5NH2, is slightly soluble in water,miscible in alcohol and ether,and turns yellow to brown in air. Aniline may be made(1) by the reduction, with iron or tin in HCI, of nitrobenzene, and(2) by the amination of chlorobenzene by heating with ammonia to a high temperature corresponding to a pressure of over 200 atmospheres in the presence of a catalyst(a mixture of cuprous chlorideandoxide).Aniline is the end point of reduction of most mononitrogen substituted benzene nuclei,as nitro benzene beta-phenyl hydroxylamine, azoxybenzene, azobenzene, hydrazobenzene. Aniline is detected by the violet coloration produced by a small amountof sodium hypochlorite. Aniline is used as a solvent, in the preparation of compound in the manufacture of dyes and their intermediates, and in the manufacture of medicinal chemicals.

Definition

ChEBI: A primary arylamine in which an amino functional group is substituted for one of the benzene hydrogens.

General Description

A yellowish to brownish oily liquid with a musty fishy odor. Melting point -6°C; boiling point 184°C; flash point 158°F. Denser than water (8.5 lb / gal) and slightly soluble in water. Vapors heavier than air. Toxic by skin absorption and inhalation. Produces toxic oxides of nitrogen during combustion. Used to manufacture other chemicals, especially dyes, photographic chemicals, agricultural chemicals and others.

Air & Water Reactions

Darkens on exposure to air and light. Polymerizes slowly to a resinous mass on exposure to air and light. Slightly soluble in water.

Reactivity Profile

Aniline is a heat sensitive base. Combines with acids to form salts. Dissolves alkali metals or alkaline earth metals with evolution of hydrogen. Incompatible with albumin, solutions of iron, zinc and aluminum, and acids. Couples readily with phenols and aromatic amines. Easily acylated and alkylated. Corrosive to copper and copper alloys. Can react vigorously with oxidizing materials (including perchloric acid, fuming nitric acid, sodium peroxide and ozone). Reacts violently with BCl3. Mixtures with toluene diisocyanate may ignite. Undergoes explosive reactions with benzenediazonium-2-carboxylate, dibenzoyl peroxide, fluorine nitrate, nitrosyl perchlorate, peroxodisulfuric acid and tetranitromethane. Violent reactions may occur with peroxyformic acid, diisopropyl peroxydicarbonate, fluorine, trichloronitromethane (293° F), acetic anhydride, chlorosulfonic acid, hexachloromelamine, (HNO3 + N2O4 + H2SO4), (nitrobenzene + glycerin), oleum, (HCHO + HClO4), perchromates, K2O2, beta-propiolactone, AgClO4, Na2O2, H2SO4, trichloromelamine, acids, FO3Cl, diisopropyl peroxy-dicarbonate, n-haloimides and trichloronitromethane. Ignites on contact with sodium peroxide + water. Forms heat or shock sensitive explosive mixtures with anilinium chloride (detonates at 464° F/7.6 bar), nitromethane, hydrogen peroxide, 1-chloro-2,3-epoxypropane and peroxomonosulfuric acid. Reacts with perchloryl fluoride form explosive products. .

Health Hazard

Aniline is classified as very toxic. Probable oral lethal dose in humans is 50-500 mg/kg for a 150 lb. person. Aniline poisoning is characterized by methemoglobin formation in the blood and resulting cyanosis or blue skin. The formation of methemoglobin interferes with the oxygen-carrying capacity of the blood. The approximate minimum lethal dose for a 150 lb. human is 10 grams. Serious poisoning may result from ingestion of 0.25 mL. People at special risk include individuals with glucose-6-phosphate-dehydrogenase deficiency and those with liver and kidney disorders, blood diseases, or a history of alcoholism.

Fire Hazard

Combustion can produce toxic fumes including nitrogen oxides and carbon monoxide. Aniline vapor forms explosive mixtures with air. Aniline is incompatible with strong oxidizers and strong acids and a number of other materials. Avoid heating. Hazardous polymerization may occur. Polymerizes to a resinous mass.

Purification Methods

Aniline is hygroscopic. It can be dried with KOH or CaH2, and distilled under reduced pressure. Treatment with stannous chloride removes sulfur-containing impurities, reducing the tendency to become coloured by aerial oxidation. It can be crystallised from Et2O at low temperatures. More extensive purifications involve preparation of derivatives, such as the double salt of aniline hydrochloride and cuprous chloride or zinc chloride, or N-acetylaniline (m 114o) which can be recrystallised from water. Redistilled aniline is dropped slowly into a strong aqueous solution ofrecrystallised oxalic acid. Aniline oxalate (m 174-175o) is filtered off, washed several times with water and recrystallised three times from 95% EtOH. Treatment with saturated Na2CO3 solution regenerated aniline which was distilled from the solution, dried and redistilled under reduced pressure [Knowles Ind Eng Chem 12 881 1920]. After refluxing with 10% acetone for 10hours, aniline is acidified with HCl (Congo Red as indicator) and extracted with Et2O until colourless. The hydrochloride is purified by repeated crystallisation before aniline is liberated by addition of alkali, then dried with solid KOH, and distilled. The product is sulfur-free and remains colourless in air [Hantzsch & Freese Chem Ber 27 2529, 2966 1894]. Non-basic materials, including nitro compounds, are removed from aniline in 40% H2SO4 by passing steam through the solution for 1hour. Pellets of KOH are then added to liberate the aniline which is steam distilled, dried with KOH, distilled twice from zinc dust at 20mm, dried with freshly prepared BaO, and finally distilled from BaO in an all-glass apparatus [Few & Smith J Chem Soc 753 1949]. Aniline is absorbed through skin and is TOXIC.[Beilstein 12 IV 223.]

Aniline Preparation Products And Raw materials

Raw materials

Preparation Products


Aniline Suppliers

Global( 253)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
inquiry@dakenchem.com CHINA 22144 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20803 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32765 55
Shanghai Macklin Biochemical Co.,Ltd. 15221275939
021-51821727 shenlinxing@macklin.cn China 13251 55
Shanghai Aladdin Bio-Chem Technology Co.,LTD 021-20337333/400-620-6333
021-50323701 sale@aladdin-e.com China 25127 65
J & K SCIENTIFIC LTD. 400-666-7788 +86-10-82848833
+86-10-82849933 jkinfo@jkchemical.com;market6@jkchemical.com China 96815 76
Meryer (Shanghai) Chemical Technology Co., Ltd. +86-(0)21-61259100(Shanghai) +86-(0)755-86170099(ShenZhen) +86-(0)10-62670440(Beijing)
+86-(0)21-61259102(Shanghai) +86-(0)755-86170066(ShenZhen) +86-(0)10-88580358(Beijing) sh@meryer.com China 40399 62
Alfa Aesar 400-610-6006; 021-67582000
021-67582001/03/05 saleschina@alfa-asia.com China 30308 84
TCI (Shanghai) Development Co., Ltd. 800-988-0390
021-67121385 sales@tcishanghai.com.cn China 22909 81
Beijing dtftchem Technology Co., Ltd. 13651141086; 86(10)60275028、60275820
86 (10) 60270825 dtftchem@sina.com China 1443 62

62-53-3(Aniline)Related Search:


Copyright 2017 © ChemicalBook. All rights reserved