ChemicalBook
Chinese Japanese Germany

Uracil

Organic alkali Fluorouracil Chemical property Uses Production methods
Uracil
Uracil
CAS No.
66-22-8
Chemical Name:
Uracil
Synonyms
Ura;Pirod;Pyrod;Uracil;Uracyl;hybarx;Urasil;Uracll;Hybar X;Uracile
CBNumber:
CB8376824
Molecular Formula:
C4H4N2O2
Formula Weight:
112.09
MOL File:
66-22-8.mol

Uracil Properties

Melting point:
>300 °C(lit.)
Boiling point:
209.98°C (rough estimate)
Density 
1.4421 (rough estimate)
refractive index 
1.4610 (estimate)
storage temp. 
+15C to +30C
form 
Crystalline Powder
pka
9.45(at 25℃)
color 
White to slightly yellow
Water Solubility 
SOLUBLE IN HOT WATER
Merck 
14,9850
BRN 
606623
Stability:
Stable. Incompatible with strong oxidizing agents.
CAS DataBase Reference
66-22-8(CAS DataBase Reference)
NIST Chemistry Reference
Uracil(66-22-8)
EPA Substance Registry System
2,4(1H,3H)-Pyrimidinedione(66-22-8)

SAFETY

Hazard Codes  Xi
Safety Statements  22-24/25
WGK Germany  2
RTECS  YQ8650000
TSCA  Yes

Uracil price More Price(18)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich PHR1581 Uracil Pharmaceutical Secondary Standard; Certified Reference Material 66-22-8 100mg $66.9 2018-11-20 Buy
Sigma-Aldrich 1705753 Uracil United States Pharmacopeia (USP) Reference Standard 66-22-8 15mg $356 2018-11-13 Buy
TCI Chemical U0013 Uracil >98.0%(HPLC)(T) 66-22-8 25g $22 2017-12-01 Buy
TCI Chemical U0013 Uracil >98.0%(HPLC)(T) 66-22-8 100g $55 2017-12-01 Buy
Alfa Aesar A15570 Uracil, 99+% 66-22-8 50g $32.7 2018-11-13 Buy

Uracil Chemical Properties,Uses,Production

Organic alkali

Uracil is an organic alkali, and is one of the four major bases in RNA. It is a major component of the pyrimidine composition in ribonucleic acid (RNA) as well as in various kinds of uridines. It can connect with ribose to generate UMP whose triphosphate compound being UTP. UTP is the precursor form of uracil in RNA biosynthesis. UTP also acts as a coenzyme to be involved in the biosynthesis of certain sugars. Uracil can block the degradation effect of tegafur, and thus increasing the concentration of fluorouracil which enhance the anti-cancer effects. Fluorouracil has similar clinical indications as uracil. It is mainly used for treating digestive cancer, breast cancer and thyroid cancer. Combination with mitomycin has a good efficacy on treating advanced gastric cancer. Laboratory synthesizes uracil through the cyclization reaction between ethyl malonyl and urea for pharmaceutical and biochemical research.
Uracil has tautomerism effect:
Uracil has tautomerism effect
Keto (2,4-2 CPCC) enol (2,4-2-hydroxy pyrimidine) in mainly exist in the form of ketone inside biological cells.
Nature uracil is presented mainly in marine organisms, particulate matter and sea lysate. It is treated as life indicator in the field of organic geochemistry.
Pyrimidine refers to the hexaheterocyclic compound with two nitrogen atoms in 1,3-position of the benzene ring, and it, together with pyridazine and pyrazine, are isomers of each other. Pyrimidine has a unique UV spectrum due to the presence of conjugated double bonds in its structure. Pyrimidine has a lower basicity and a weaker lectrophilic substitution reaction than pyridine. But it is more prone to have nucleophilic substitution. Derivatives of pyrimidine are widely distributed in nature, including vitamin B1, uracil, thymine, and cytosine which all containing a pyrimidine structure.

Fluorouracil

Fluorouracil, briefly referred as FU, is currently one of the most commonly used anti-cancer drug. It is white crystals with pKa = 8.1, m.p.282~283 °C. It is slightly soluble in water (12mg/ml at 25 °C) and ethanol, but insoluble in chloroform and ether. It is easily soluble in diluted acid and alkali. It is hydrolyzed in the presence of strong base but is stable in normal saline. Due to the introduction of a strong electrically fluorine atoms, the acidity of Fu is 30 times higher than its parent, uracil. The injection of Fu usually is an aqueous solution with pH 9.0 adjusted by sodium hydroxide. It is sensitive to light and easy to crystallize when stored at low temperatures or prolonged room temperature.
According to the stronger ability of tumor tissue of rats in utilizing pyrimidine than normal tissue n, in 1957, Duschinsky and Heidelbergere designed and replace the 5-hydrogen in uracil to fluorine with similar size and generated Fu, as an anti-metabolite of uracil to achieve selective anticancer effects. FU has inhibitory effects on many kinds of animal transplanted tumors such as mouse leukemia L1210, L615, and adenocarcinoma 755. Tumor cells has no cross-resistance to it and other commonly used anti-cancer drugs such as cytarabine, methotrexate, mercaptopurine, cyclophosphamide, and carmustine.
FU is converted into 5-fluoro-deoxy-uridine monophosphate (FDUMP) and 5-fluorouracil nucleoside triphosphate (FUTP) in tissues. FDUMP inhibits the thymidylate synthase (TS) via forming compound with TS and 5,10-methenyltetrahydrofolate, thus resulting in a lack of intracellular thymine nucleotide and further inhibition of DNA synthesis, finally leading to cell death. On the other hand, FUTP is incorporated into RNA as the substrate of RNA polymerase substrate and affect the normal synthesis and function of RNA. In tissue culture, supplement of thymidine (TdR) can reverse the FU cytotoxicity, so that it has been realized for many years that the impact on DNA is the primary growth-inhibitory mechanism of FU. However, it was found that TdR didn’t completely reverse the cytotoxicity of FU, and the combination of FU and TdR significantly improved the FU’s incorporation into RNA and its anti-cancer effect. After culturing together of L1210 leukemia cells with 6-H3-5FU for 22 hours, it was found the existence of 80 fmol of FDUMP-TS-5,10CH2-H4 folic acid complexes in 106 cell while 400 fmol of FU bound to RNA. This emphasizes the importance of FU’s incorporation into RNA FU for its anti-tumor effect. FU is a cell cycle-specific drug which playing the significant role at S-phase.
Reference: China Medical Encyclopedia Editing Committee; editor: Liang Huang; Chinese Medical Encyclopedia.
The above information is edited by the Chemicalbook of Dai Xiongfeng.

Chemical property

White or light yellow crystalline needle. Melting point 338 °C; easily soluble in water, soluble in diluted ammonia, slightly soluble in cool water, insoluble in alcohol and ether.

Uses

For biochemical research, drugs synthesis; being used as pharmaceutical intermediates, also used in organic synthesis

Production methods

It is produced through the reaction of malate, sulfuric acid and urea.

Chemical Properties

Crystalline needles. Soluble in hot water, ammonium hydroxide, and other alkalies; insoluble in alcohol and ether.

Uses

Nitrogenous base on RNA nucleosides.

Uses

antineoplastic

Definition

ChEBI: A common and naturally occurring pyrimidine nucleobase in which the pyrimidine ring is substituted with two oxo groups at positions 2 and 4. Found in RNA, it base pairs with adenine and replaces thymine during DNA transcription.

Uses

In biochemical research.

Purification Methods

Uracil crystallises from water (m 339-341o) and m 338o after sublimation in high vacuum. Its solubility in H2O at 20o is 1g/300mL. [Beilstein 24 H 312, 24 I 312, 24 II 169, 24 III/IV 1193.]

Uracil Preparation Products And Raw materials

Raw materials

Preparation Products


Uracil Suppliers

Global( 434)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Zhengzhou Yuanli Biological Technology Co., Ltd
0086-371-67897895
info@zzyuanli.cn CHINA 119 58
Capot Chemical Co.,Ltd.
+86 (0)571-855 867 18
+86 (0)571-858 647 95 sales@capotchem.com China 19954 60
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 Abel@chembj.com CHINA 3218 55
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
inquiry@dakenchem.com CHINA 22119 58
Shanghai Bojing Chemical Co.,Ltd.
+86-21-37122233
+86-21-37127788 Candy@bj-chem.com CHINA 500 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20795 55
Shanghai Time Chemicals CO., Ltd.
+86-021-57951555
+86-021-57951555 jack.li@time-chemicals.com CHINA 1374 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32764 55
PI & PI BIOTECH INC.
020-81716320
020-81716319 Sales@pipitech.com CHINA 2549 55
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 10011 58

View Lastest Price from Uracil manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2018-08-16 Uracil
66-22-8
US $7.00 / KG 1KG 99% 1000KG
2018-08-08 Uracil
66-22-8
US $1.00 / KG 1KG 99% Customized

66-22-8(Uracil)Related Search:


  • DNA / RNA Synthesis
  • Bases (DNA / RNA)
  • 2,4-DIOXOPYRIMIDINE
  • 2,4-DIHYDROXYPYRIMIDINE
  • 2,4-PYRIMIDINEDIOL
  • 2,4(1H,3H)-PYRIMIDINEDIONE
  • 2-HYDROXY-4(1H)-PYRIMIDINONE
  • Building Blocks
  • BioChemical
  • 66-22-8
  • Cellocidin
  • Cellomate
  • CCTGCCCTGUGCAGCTGTGGG
  • PYRIMIDINE-2,4-DIOL
  • PYRIMIDINE-2,4(1H,3H)-DIONE
  • Pyrimidines
  • Nucleotide
  • Heterocyclic Building Blocks
  • Metabolomics
  • Metabolic Pathways
  • Metabolites and Cofactors on the Metabolic Pathways Chart
  • 1H-Pyrimidine-2,4-dione
  • 2,(1H,3H)-Pyriminedione
  • 2,4-Dioxypyrimidine
  • 2,4-Pyrimidinedione
  • URACIL 98%
  • 2,4-DIHYDROXYPYRIMIDINE / URACIL
  • Heterocyclic Compounds
  • 13078-39-7
  • Pyrimidines
  • Biochemistry
  • Nucleobases and their analogs
  • Nucleosides, Nucleotides & Related Reagents
  • Nutritional Supplements
  • Nucleic acids
  • URACIL extrapure
  • 2,4(1H,3H)-Pyrimidinedione, 2,4-Dihydroxypyrimidine, 2,4-Pyrimidinediol
  • Dichlorotitanium
  • Uracil ,98%
  • NSC 3970
  • Uracil
  • Uracil,2,4(1H,3H)-Pyrimidinedione, 2,4-Dihydroxypyrimidine, 2,4-Pyrimidinediol
  • Bases & Related Reagents
  • Intermediates & Fine Chemicals
  • Nucleotides
  • Pharmaceuticals
  • Uracil (15 mg)
  • Uracil, 99+% 100GR
  • Uracil, 99+% 25GR
  • 4-Hydroxyuracil
  • Uracil API
  • Building Blocks
  • C4 to C5
  • Chemical Synthesis
  • Heterocyclic Building Blocks
  • Nutrition Research
  • Panax ginseng
  • Phytochemicals by Plant (Food/Spice/Herb)
Copyright 2017 © ChemicalBook. All rights reserved