Chinese Japanese Germany Korea


Dimethylamine structure
Chemical Name:
DMA-40;DMA-60;DMA-65;(CH3)2NH;ai3-15638-x;Dimethylamin;DIMETHYLAMINE;Dimethylamine (I);DiMethylaMine aq;N-Methylmethanamin
Molecular Formula:
Formula Weight:
MOL File:

Dimethylamine Properties

Melting point:
−93 °C(lit.)
Boiling point:
7 °C(lit.)
0.89 g/mL at 25 °C
vapor density 
1.55 (vs air)
vapor pressure 
16.97 psi ( 55 °C)
refractive index 
n20/D 1.37
Flash point:
60 °F
storage temp. 
Flammables area
very soluble in water (163 g/100 g water at 40°C); soluble in ethanol, ethyl ether, and many organic solvents
10.68(at 25℃)
Clear slightly yellow
explosive limit
Water Solubility 
Miscible with water and most organic solvents.
Exposure limits
TLV-TWA 10 ppm (~18 mg/m3) (ACGIH, MSHA, and OSHA); IDLH 2000 ppm (NIOSH).
Stable. Generally used as a solution in water at concentrations up to around 40%. Extremely flammable in the pure form. Incompatible with strong oxidizing agents.
CAS DataBase Reference
124-40-3(CAS DataBase Reference)
NIST Chemistry Reference
Methanamine, N-methyl-(124-40-3)
EPA Substance Registry System
Methanamine, N-methyl-(124-40-3)
  • Risk and Safety Statements
  • Hazard and Precautionary Statements (GHS)
  • NFPA
Hazard Codes  F+,Xn,C,F,T
Risk Statements  12-20-37/38-41-34-20/22-11-39/23/24/25-23/24/25-52/53-40-19
Safety Statements  3-16-26-29-36/37/39-45-39-61
RIDADR  UN 2924 3/PG 2
WGK Germany  2
RTECS  IP8750000
Autoignition Temperature 753 °F
HazardClass  3
PackingGroup  II
HS Code  29211100
Hazardous Substances Data 124-40-3(Hazardous Substances Data)
Signal word: Danger
Hazard statements:
Code Hazard statements Hazard class Category Signal word Pictogram P-Codes
H220 Extremely flammable gas Flammable gases Category 1 Danger P210, P377, P381, P403
H225 Highly Flammable liquid and vapour Flammable liquids Category 2 Danger P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H280 Contains gas under pressure; may explode if heated Gases under pressure Compressed gas
Liquefied gas
Dissolved gas
Warning P410+P403
H301 Toxic if swalloed Acute toxicity,oral Category 3 Danger P264, P270, P301+P310, P321, P330,P405, P501
H302 Harmful if swallowed Acute toxicity,oral Category 4 Warning P264, P270, P301+P312, P330, P501
H311 Toxic in contact with skin Acute toxicity,dermal Category 3 Danger P280, P302+P352, P312, P322, P361,P363, P405, P501
H314 Causes severe skin burns and eye damage Skin corrosion/irritation Category 1A, B, C Danger P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H315 Causes skin irritation Skin corrosion/irritation Category 2 Warning P264, P280, P302+P352, P321,P332+P313, P362
H318 Causes serious eye damage Serious eye damage/eye irritation Category 1 Danger P280, P305+P351+P338, P310
H331 Toxic if inhaled Acute toxicity,inhalation Category 3 Danger P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H332 Harmful if inhaled Acute toxicity,inhalation Category 4 Warning P261, P271, P304+P340, P312
H333 May be harmful if inhaled Acute toxicity,inhalation Category 5 P304+P312
H335 May cause respiratory irritation Specific target organ toxicity, single exposure;Respiratory tract irritation Category 3 Warning
H351 Suspected of causing cancer Carcinogenicity Category 2 Warning P201, P202, P281, P308+P313, P405,P501
H370 Causes damage to organs Specific target organ toxicity, single exposure Category 1 Danger P260, P264, P270, P307+P311, P321,P405, P501
H412 Harmful to aquatic life with long lasting effects Hazardous to the aquatic environment, long-term hazard Category 3 P273, P501
Precautionary statements:
P210 Keep away from heat/sparks/open flames/hot surfaces. — No smoking.
P260 Do not breathe dust/fume/gas/mist/vapours/spray.
P261 Avoid breathing dust/fume/gas/mist/vapours/spray.
P273 Avoid release to the environment.
P280 Wear protective gloves/protective clothing/eye protection/face protection.
P311 Call a POISON CENTER or doctor/physician.
P301+P310 IF SWALLOWED: Immediately call a POISON CENTER or doctor/physician.
P303+P361+P353 IF ON SKIN (or hair): Remove/Take off Immediately all contaminated clothing. Rinse SKIN with water/shower.
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuerinsing.
P370+P378 In case of fire: Use … for extinction.
P405 Store locked up.
P403+P235 Store in a well-ventilated place. Keep cool.
P410+P403 Protect from sunlight. Store in a well-ventilated place.

NFPA 704

Diamond Hazard Value Description
Flammability   4 Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Includes pyrophoric substances. Flash point below room temperature at 22.8 °C (73 °F). (e.g. acetylene, propane, hydrogen gas)
Instability   0 Normally stable, even under fire exposure conditions, and is not reactive with water (e.g. helium,N2)

(NFPA, 2010)

Dimethylamine price More Price(19)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich 295280 Dimethylamine anhydrous, ≥99% 124-40-3 100g $205 2018-11-20 Buy
Sigma-Aldrich 295280 Dimethylamine anhydrous, ≥99% 124-40-3 1kg $343 2018-11-20 Buy
Alfa Aesar 031458 Dimethylamine, 40% w/w aq. soln. 124-40-3 3kg $132 2018-11-16 Buy
Alfa Aesar 031458 Dimethylamine, 40% w/w aq. soln. 124-40-3 1kg $50.7 2018-11-16 Buy
Sigma-Aldrich 426458 Dimethylamine solution 40wt. % in H 124-40-3 2l $62.5 2018-11-20 Buy

Dimethylamine Chemical Properties,Uses,Production


Dimethylamine is a colourless flammable gas at room temperature. It has a pungent, fishy, or ammonia-like odour at room temperature and is shipped and marketed in compressed liquid form. It is very soluble in water and soluble in alcohol and ether. It is incompatible with oxidising materials, acrylaldehyde, fluorine, maleic anhydride, chlorine, or mercury. Dimethylamine is a precursor to several industrially important compounds. For instance, it used in the manufacture of several products, for example, for the vulcanisation process of rubber, as detergent soaps, in leather tanning, in the manufacture of pharmaceuticals, and also for cellulose acetate rayon treatment.

Chemical Properties

colourless gas with strong ammonia-like smell

Chemical Properties

Dimethylamine reacts readily with acids to produce salts due to the presence of the unshared electron pair on the nitrogen atom. Similarly, dimethylamine reacts with acid anhydrides, halides, and esters, with CO2 or CS2, or with isocyanic or isothiocyanic acid derivatives. It can also react with nitrite, especially under acidic conditions, and possibly nitrogen oxides (Iqbel 1986) to form N-nitrosodimethylamine, a potent carcinogen in various animal species and a suspect human carcinogen (ATSDR 1989; Scanlan 1983; Zeisel et al 1988). N-Nitrosodimethylamine also can be formed upon storage of aqueous dimethylamine solutions or formulations of the dimethylamine salts of the herbicides 2,4D and MCPA (Wigfield and McLenaghan 1987a,b). Dimethylamine also can be nitrosated photochemically in aqueous solutions containing nitrite with the reaction occurring most readily at alkaline pH (Ohta et al 1982).


Dimethylamine is used in the manufactureof N-methylformamide, N-methylacetamide,and detergent soaps; in tanning; and as anaccelerator in vulcanizing rubber. It is commercially sold as a compressed liquid intubes or as a 33% aqueous solution..

Production Methods

Methods used commercially for the large-scale production of dimethylamine are generally those used for methylamine synthesis (HSDB 1989). The most widely used process involves heating ammonium chloride and methyl alcohol to about 300°C in the presence of a dehydrating catalyst such as zinc chloride. Dimethylamine has also been prepared from methanol and ammonia or by the catalytic hydrogenation of nitrosodimethylamine (Schweizer et al 1978). It is usually marketed in compressed liquid (anhydrous) form or as a 25-60% aqueous solution.
Dimethylamine is also naturally present in biological systems, probably being formed as a breakdown product from trimethylamine N-oxide (Timofievskaja 1984). Thus it is present in gastric juice of humans, rats, dogs and ferrets at concentrations of 12.6 ± 14 nmol/ml (Zeisel et al 1988); it is a constituent of most foods, especially seafood including squid and octopus, frequently eaten in traditional Chinese and Japanese diets, where it reaches concentrations of 946-2043 p.p.m. (Lin et al 1983,1984). Food processing and cooking markedly increases the dimethylamine contents of foods by increasing the breakdown of constituents such as trimethylamine N-oxide and sarcosine (Lin et al 1983, 1984; Lin and Hurng 1985). Dimethylamine occurs in the air of iron foundries where the amine was used in the casting process (Hansen et al 1985) and also is released from plastic material used in construction (Kiselev et al 1983).
Nitrosation of dimethylamine occurs forming the carcinogenic N-nitrosodimethylamine upon storage of anhydrous and aqueous solutions of dimethylamine or formulations of the dimethylamine salts of the herbicides 2,4-dichlorophenoxyacetic acid (2,4D), 4-chloro-2-methylphenoxyacetic acid (MCPA) and 3,6-dichloro- 2-methoxybenzoic acid (dicamba) (Wigfield and McLenaghan 1987a,b). The volatile N-nitrosodimethylamine is also formed in foods by reaction of dimethylamine with sodium nitrite added as a preservative or by reaction with atmospheric nitrogen oxides during food processing (ATSDR 1989; Gross and Newberne 1977; Scanlan 1983). Concentrations of the nitrosoamine in cheese, apple cider, milk, cereals, vegetables, seafood, cured meats, etc. range between 0.05 and 130 p.p.b. (ATSDR 1989).


ChEBI: A secondary aliphatic amine where both N-substituents are methyl.

General Description

A colorless gas smelling of fish at low concentrations and of ammonia at higher concentrations. Shipped as a liquid under its vapor pressure. Contact with the unconfined liquid can cause frostbite by evaporative cooling and chemical type burns. Density of liquid 5.5 lb / gal. The gas, which is corrosive, dissolves readily in water to form flammable corrosive solutions. The gas is heavier than air and can asphyxiate by the displacement of air. Gas is easily ignited and produces toxic oxides of nitrogen when burned. Long-term inhalation of low concentrations or short-term inhalation of low concentrations has adverse health effects. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket. Used to make other chemicals and as a solvent.

Air & Water Reactions

Highly flammable. Water soluble.

Reactivity Profile

DIMETHYLAMINE is a base, neutralizing acids in exothermic reactions, and a reducing agent. Dimethylamine is temperature sensitive. Reacts vigorously with mercury and chlorine . Reacts violently with strong oxidizing agents and attacks copper and copper compounds [Handling Chemicals Safely, 1980 p. 123]. Reacts with hypochlorites to give N-chloroamines, some of which are explosives when isolated [Bretherick, 1979 p. 108].

Health Hazard

VAPOR: Irritating to eyes, nose and throat. If inhaled, will cause difficult breathing. LIQUID. Will burn skin and eyes. Harmful if swallowed.

Health Hazard

Exposures to dimethylamine cause adverse health effects. The symptoms include, but are not limited to, severe pain to the eyes, corneal edema/injury, redness, irritation and burning of the skin, chemical burns, and dermatitis. Severe inhalation exposure causes runny nose, coughing, sneezing, burning of the nose and throat, shortness of breath, and delayed pulmonary effects like tracheitis, bronchitis, pulmonary edema, and pneumonitis.

Health Hazard

The effects of dimethylamine are quite similar to those reported for methylamine and are generally confined to the respiratory tract. Inhalation of vapors irritates the mucous membranes of the nose, throat, and lungs resulting in sneezing, coughing, dyspnea and pulmonary edema as well as dermatitis and burns of the skin and mucous membranes (HSDB 1989). The vapors can cause significant tearing and conjunctivitis. Dimethylamine and its antioxidant derivatives such as zinc dimethyldithiocarbamate from surgical gloves were found to be the most important causes of contact dermatitis in humans (Kaniwa et al 1988). Workers in a foundry complaining of breathlessness and choking were found to be exposed to 1-46 mg/m3 dimethylamine in the air (Ruhe and Anderson 1984).

Health Hazard

Dimethylamine is a strong irritant to the eyes,skin, and mucous membranes. Spill of liquidinto the eyes can cause corneal damage andloss of vision. Skin contact with the liquidcan produce necrosis. At sublethal concentra tions, inhalation of dimethylamine producedrespiratory distress, bronchitis, pneumonitis,and pulmonary edema in test animals. Theacute oral toxicity was moderate, greater thanfor monomethylamine.
LC50 value, inhalation (rats): 4540 ppm/6 hLD50 value, oral (mice): 316 mg/kg
Buckley and coworkers (1985) have investigated the inhalation toxicity of dimethylamine in F-344 rats and B6C3F1 mice.Animals exposed to 175 ppm for 6 h/day,5 days/week for 12 months showed significant lesions in the nasal passages. Rats developed more extensive olfactory lesions thandid mice. The study indicated that olfactory sensory cells were highly sensitive todimethylamine. Even at a concentration of10 ppm, the current threshold limit value,the rodents developed minor lesions fromexposure.

Fire Hazard

FLAMMABLE. Flashback along vapor trail may occur. May explode if ignited in an enclosed area. Vapors are eye, skin and respiratory irritants.

Industrial uses

Dimethylamine is used as an accelerator in vulcanizing rubber, as an antiknock agent for fuels, in photography, as a plasticizer, ion exchange agent, as an acid gas absorbent, a flotation agent, a dehairing agent in the tanning of leather and in electroplating (HSDB 1989; Sax and Lewis 1987; Windholz et al 1983). Dimethylamine also serves as the base for a large number of commercial products including detergent soaps, dyes, pharmaceuticals, textile chemicals, surfactants and in the manufacture of unsymmetrical dimethylhydrazine (used in missile fuels), the solvent dimethylacetanilide and in the synthesis of dimethylformamide, one of the most commonly used organic solvents. Usage of dimethylamine in 1972 was estimated at 50% for production of dimethylformamide and dimethylacetamide (used as spinning solvents for acrylic fibers), 15% as an intermediate in the preparation of the surfactant laurel dimethylamine oxide, 15% as an intermediate for rubber chemicals (including thorium accelerators), and 20% for other applications including the production of unsymmetrical dimethylhydrazine in rocket fuels and the dimethylamine salt of 2,4-dichlorophenoxyacetic acid (HSDB 1989). U.S. production and sales of dimethylamine in 1985 was 65.9 million pounds.

Safety Profile

Poison by ingestion. Moderately toxic by inhalation and intravenous routes. Mutation data reported. An eye irritant. Corrosive to the eyes, skin, and mucous membranes. A flammable gas. When heated to decomposition it emits toxic fumes of Nx,. Incompatible with acrylddehyde, fluorine, and maleic anhydride


Dimethylamine is normally present in the stomach and urine of animals and humans. The secondary amine is formed from trimethylamine (a breakdown product of dietary choline) via trimethylamine N-oxide (Zeisel et al 1985) and probably also from dietary lecithin and creatine (Lewis et al 1985). Enzymes within gut bacteria catalyze these conversions. The resulting dimethylamine is readily absorbed primarily from the small intestine, and to a much lesser extent, the stomach, and excreted in the urine (Ishiwata et al 1984; Zeisel et al 1983). Humans consuming a diet high in fish show at least a 4-fold increase in urinary dimethylamine excretion (Zeisel and Dacosta 1986).
Although dimethylamine may arise primarily from trimethylamine in a process catalyzed by bacteria, when rats were fed a commercial diet containing 23.6 p.p.m. dimethylamine, nearly 50% of the amine was recovered in the stomach with progressively declining amounts found towards lower regions of the gastrointestinal tract (Ishiwata et al 1984). Using ligated sections, the t1/2 of dimethylamine was found to be 198 min in the stomach with the intestines and caecum varying from 8.3-31.5 min. The results indicated that dimethylamine is rapidly absorbed from the intestine and into the blood from where it disappears quickly, to be excreted predominately in the urine with a small amount excreted into the bile.
In rats fed a choline deficient diet, or rats devoid of gut bacteria, dimethylamine was still excreted in the urine (Zeisel et al 1985). This suggests that mammalian cells may possess other, as yet undefined, endogenous pathways for forming dimethylamine. The absorption, distribution and secretion of dimethylamine in the digestive tract and its biliary and urinary excretion was studied in male Wistar rats (Ishiwata et al 1984). Animals were fed diets containing 1 or 23.6 p.p.m. dimethylamine for one wk and then killed. Single i.v. doses also were administered to control and bile-duct cannulated rats and the urine collected over a 24 h period. The authors found high dimethylamine concentrations in the upper part of the gastrointestinal tract and a low concentration in the lower intestine. The half-life for injected dimethylamine was 12.5 min and excretion was primarily via the bile.
The disposition and pharmacokinetics of [14C]-dimethylamine were also studied in male Fischer 344 rats following 6 h inhalation of 10 or 175 p.p.m. of the labeled amine (McNulty and Heck 1983). At 72 h after exposure, the disposition at both doses was similar with greater than 90% of the radioactivity appearing in the urine and feces, 7-8% in various tissues and 1.5% exhaled as 14CO2. Over 98% of the urinary radioactivity was the parent [14C]-dimethylamine. However, some formation of small quantities of dimethylamine oxidative metabolites was seen.
Much of the concern over the presence of dimethylamine in humans stems from its ability to serve as a precursor for the formation of the putative carcinogen, N-nitrosodimethylamine. Accordingly, several studies have been conducted to assess the potential for exogenously administered dimethylamine to form this nitroso compound. When dimethylamine was given intravenously to dogs and ferrets, the amine was rapidly transported from the blood into the gastric fluid, where N-nitrosodimethylamine formation can occur (Zeisel et al 1986). Nnitrosodimethylamine was formed in vitro when sodium nitrite was added to dog (Lintas et al 1982) or human gastric fluid (Zeisel et al 1988). The resulting N-nitrosamine then is rapidly absorbed from the stomach. When conventional and germfree male Wistar rats were treated with dimethylamine and sodium nitrite, severe liver necrosis was observed at 48 h only in the germfree animals (Sumi and Miyakawa 1983). This may indicate, at least in this species, that metabolism of dimethylamine by intestinal microflora may minimize nitrosamine formation. 7V-nitrosodimethylamine requires metabolic activation to form the reactive alkylating species responsible for the carcinogenic and mutagenic activity of the nitrosamine (ATSDR 1989).


Dimethylamine should be stored in a cool, dry, well-ventilated area in tightly sealed containers that are labeled in accordance with OSHA’s Hazard Communication Standard [29 CFR 1910.1200]. Containers of dimethylamine should be protected from physical damage and ignition sources, and should be stored separately from oxidizing materials, acrylaldehyde, fl uorine, maleic anhydride, chlorine, and mercury. Outside or detached storage is preferred. If stored inside, a standard flammable liquids cabinet or room should be used. Ground and bond metal containers and equipment when transferring liquids. Empty containers of dimethylamine should be handled appropriately.

Purification Methods

Dry dimethylamine by passage through a KOH-filled tower, or by standing with sodium pellets at 0o during 18hours. [Beilstein 4 IV 128.]


During handling of dimethylamine, workers should use proper fume hoods, personal protective clothing and equipment, avoid skin contact, and use gloves, sleeves, and encapsulating suits. Dimethylamine is extremely flammable and may be ignited by heat, sparks, or open flames. Liquid dimethylamine will attack some forms of plastic, rubber, and coatings and is flammable. The vapors of dimethylamine are an explosion and poison hazard. Containers of dimethylamine may explode in the heat of a fi re and require proper disposal. Workers should use dimethylamine with adequate ventilation and containers must be kept properly closed.

Dimethylamine Preparation Products And Raw materials

Raw materials

Preparation Products

Dimethylamine Suppliers

Global( 222)Suppliers
Supplier Tel Fax Email Country ProdList Advantage
Henan DaKen Chemical CO.,LTD.
+86-371-55531817 CHINA 21990 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20680 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32457 55
Anhui Royal Chemical Co., Ltd.
+86-025-86736275 CHINA 488 55
Hubei Jusheng Technology Co.,Ltd.
86-188-71490254 CHINA 20095 58
career henan chemical co
+86-371-86658258 CHINA 19923 58
Alfa Aesar 400-610-6006; 021-67582000
021-67582001/03/05 China 30168 84
Infinity SCI 400-106-2016 China 11214 55
Shanghai Heng Yue Chemical Technology Co., Ltd. +86-021-51691771
+86-021-58619266 China 165 56
Energy Chemical 021-58432009 / 400-005-6266
021-58436166-800 China 44046 61

View Lastest Price from Dimethylamine manufacturers

Image Release date Product Price Min. Order Purity Supply Ability Manufacturer
2018-12-19 Dimethylamine
US $1.00 / kg 1kg as customer's need 500kg career henan chemical co

Dimethylamine Spectrum

124-40-3(Dimethylamine)Related Search:

Copyright 2017 © ChemicalBook. All rights reserved