ChemicalBook >> CAS DataBase List >>Tamoxifen

Tamoxifen

CAS No.
10540-29-1
Chemical Name:
Tamoxifen
Synonyms
TAMOXIFEN BASE;Mammaton;Novaldex;amoxifen;z-tamoxifen;Genox;C07108;Tamoxen;ici47699;TAMOXIFEN
CBNumber:
CB9438781
Molecular Formula:
C26H29NO
Molecular Weight:
371.51
MDL Number:
MFCD00010454
MOL File:
10540-29-1.mol
MSDS File:
SDS
Last updated:2024-03-27 16:40:14

Tamoxifen Properties

Melting point 97-98 °C(lit.)
Boiling point 501.18°C (rough estimate)
Density 1.0630 (rough estimate)
vapor pressure 0Pa at 25℃
refractive index 1.6000 (estimate)
storage temp. 2-8°C
solubility H2O: insoluble <0.1% at 20°C
pka pKa 8.71(H2O t = 25 I = 0.025) (Uncertain)
color Crystals from pet ether
Water Solubility Insoluble in water. Soluble in methanol, ethanol, propanol or propylene glycol.Soluble in dimethyl sulfoxide, dichloromethane and ethanol. Insoluble in water.
Merck 13,9137
Stability Light Sensitive
InChIKey NKANXQFJJICGDU-QPLCGJKRSA-N
LogP 6.3 at 20℃
CAS DataBase Reference 10540-29-1(CAS DataBase Reference)
FDA UNII 094ZI81Y45
ATC code L02BA01
IARC 1 (Vol. 66, 100A) 2012
EPA Substance Registry System Tamoxifen (10540-29-1)

Pharmacokinetic data

Protein binding >99%
Volume of distribution 20(L/kg)
Biological half-life 7 days / Probably unchanged

SAFETY

Risk and Safety Statements

Symbol(GHS)  GHS hazard pictogramsGHS hazard pictograms
GHS08,GHS09
Signal word  Danger
Hazard statements  H350-H360-H410
Precautionary statements  P201-P273-P308+P313
Hazard Codes  T,Xi
Risk Statements  45-60-61-64-36/37/38
Safety Statements  53-45-36-26
WGK Germany  3
RTECS  KR5919600
HS Code  29221990
Toxicity LD50 orl-rat: 4100 mg/kg DRFUD4 9,186,84
NFPA 704
0
2 0

Tamoxifen price More Price(37)

Manufacturer Product number Product description CAS number Packaging Price Updated Buy
Sigma-Aldrich T2859 Tamoxifen powder, Suitable for cell culture 10540-29-1 0.5G $187 2024-03-01 Buy
Sigma-Aldrich T2859 Tamoxifen powder, Suitable for cell culture 10540-29-1 1G $310 2024-03-01 Buy
Sigma-Aldrich T-143 Tamoxifensolution 1?mg/mLinmethanol,certifiedreferencematerial,ampuleof1?mL,Cerilliant? 10540-29-1 1ML $112 2024-03-01 Buy
Sigma-Aldrich 85256 Tamoxifen analytical standard 10540-29-1 50mg $70.5 2024-03-01 Buy
Sigma-Aldrich 06734 Tamoxifen certified reference material, TraceCERT 10540-29-1 50mg $123 2024-03-01 Buy
Product number Packaging Price Buy
T2859 0.5G $187 Buy
T2859 1G $310 Buy
T-143 1ML $112 Buy
85256 50mg $70.5 Buy
06734 50mg $123 Buy

Tamoxifen Chemical Properties,Uses,Production

Antiestrogen drug

Tamoxifen is non-steroidal anti-estrogen drugs. Its structure is similar to estrogen, existing Z type and O type isomers. The physical and chemical properties are different from each other, and physiological activity is different. E type has weak estrogenic activity, Z type having the effect of anti-estrogen. If the estrogen receptor (ER) is present in breast cancer cells, estrogen enters into tumor cells and binds with ER, promoting mRNA and DNA synthesis of tumor cells, stimulating tumor cell growth. However, Tamoxifen Z isomer enters into the cell, competitively binding with ER to form receptor complexes, inhibiting that estrogen plays an role, and inhibiting proliferation of breast cancer cells. Clinically it is mainly used for high levels of estrogen in breast cancer patients, which combines with androgen and other anticancer drugs (such as doxorubicin, etc., enhancing the effectiveness and showing good effect in postmenopausal patients with advanced breast cancer. Oral: once 10~20mg, 2 times 1 day. Common side effects are flushing, genital itching, occasional vaginal bleeding, a few may have a headache, fluid retention, for a long time may have retinal disease, vision loss, the other can have bone marrow suppression and gastrointestinal reactions.
Tamoxifen is used to treat breast cancer, and can reduce mortality and recurrence rate of estrogen-dependent breast cancer patients, so it has a good prospect. Another endocrine therapy aromatase inhibitor, it can inhibit effect of aromatase, preventing that the and rostenedione secreted by adrenal gland is transformed into estrogen in peripheral tissues (fat, skin, muscle), further reducing estrogen levels in postmenopausal women. It is currently one of the important means to treat postmenopausal patients with estrogen and progesterone receptor-positive breast cancer.
Mechanism of action of Tamoxifen and aromatase inhibitors
Figure 1 Mechanism of action of Tamoxifen and aromatase inhibitors

Origin of the study

In the 1960s, as for initial research of estrogen drug, scientists found that anti-estrogen drugs can prevent endometrial hyperplasia and embryo implantation in rats, and has the role of contraception, hoping that it can be used as contraceptives for use in humans. In1966 UK reproductive endocrinologist Walpole firstly reported study of Tamoxifen. When investigating an anti-estrogen substance-tristyrylphenol, they found that its two derivatives had different physiological effects. They used vaginal epithelium keratosis index and uterine weight growth index as the evaluation index. Results showed that homeopathic structure (ICI47,699) has estrogen-like effects on uterus and vaginal epithelial cells in rat and mice; trans structure (ICI46,747) has very weak estrogenic effect on vaginal epithelial cells in rat, has an anti-estrogenic effect on the uterus, which can terminate early pregnancy and inhibit ovulation, but it also has anti-estrogenic effect on uterus and vaginal epithelial cells in mouse. Trans structure ICI46,747 which is now Tamoxifen, scientists expect that ICI46,747 can be used as a new contraceptives in humans. However, during the clinical trial, they found that the drug did not show the same effect in rats, but the drug can stimulate endometrial hyperplasia, and promote ovulation. Thus, clinically Tamoxifen was firstly used as ovulation drugs in anovulatory infertility patients, and still in use. For the current field of assisted reproductive technology treatment of ovarian hyperstimulation program, it also has a good effect on ovulation. Thus, Tamoxifen had both estrogen-like and anti-estrogenic effects, and showed different effects on different species and tissues.
The structural formula of Tamoxifen
Figure 2 The structural formula of Tamoxifen.
The above information is edited by the Chemicalbook of Liu Yujie.

Uses

1. Treatment for Women with metastatic breast cancer recurrence.
2. Used as adjuvant therapy after surgery for breast cancer metastasis, and relapse prevention.
3. For the treatment of ovarian cancer, endometrial cancer and endometriosis.

Pharmacokinetics

This product is easily absorbed orally, generally three hours after taking the drug concentration in the blood is up to the peak; because of enterohepatic circulation, the concentration of product is a more lasting in vivo; in the liver metabolism this product mainly excreted in the feces by biliary (58% to 100% ) rarely excreted in urine (only 2% to 21%); after the anima taking isotopically labeled this product, it is found that radioactivity is the highest in animal ovaries.After it is used for post-menopausal women, the concentration in endometrium is 2 times in plasma .

Side effects

1. Early treatment of bone cancer pain and may be a transient increase, continued treatment can be gradually reduced.
2. gastrointestinal reactions: loss of appetite, nausea, vomiting, diarrhea.
3. Reproductive system: menstrual disorders, amenorrhea, vaginal bleeding, genital itching, endometrial hyperplasia, endometrial polyps and endometrial cancer.
4. Skin: facial flushing, rash, hair loss.
5. Bone marrow: occasionally neutropenia and thrombocytopenia.
6. Liver function: occasionally abnormalities.
7. Eyes: using for long time (17 months or more) and large number (240~320mg per day), may appear retinal lesions or corneal opacity .
8. The rare and needed attention of side effects: insanity, pulmonary embolism (showing shortness of breath), thrombosis, weakness, drowsiness.

Contraindications

1. It is contraindicated in patients who are allergic to this product.
2. It is contraindicated in patients with fundus diseases.
3. It is contraindicated in patients who have history of deep vein thrombosis and pulmonary embolism or are receiving anticoagulant therapy.
4. It is contraindicated in pregnant woman and nursing mothers.

Precautions

1. Abnormal liver function should be used with caution. If bone metastasis, patients are needed to regularly check blood calcium in the early treatment.
2.Pregnancy safety of this drug is classified as D class by FDA.

Drug interactions

1. The drug combines with fluorouracil, cyclophosphamide, methotrexate, vincristine and doxorubicin, etc. and can improve the effects.
2. The drug can increase the dopaminergic effect of bromocriptine mesylate.
3. The data show that the drug can prolong neuromuscular blockade of atracurium.
4. The drug can enhance the effect of anticoagulants, not combining with anticoagulants (such as warfarin, two coumarin anticoagulants).
5. Antacids and cimetidine, famotidine, ranitidine can change the pH of the stomach, making the drug enteric-coated tablets decomposed and showing a stimulating effect on the stomach, so when l in combination , these drugs should be interval of 1 to 2 hours.
6. Estrogen can affect the therapeutic effect of the drug, should not be combined.
7. The in vitro test results show that the drug may inhibit the metabolism of tacrolimus.
8.When in combination with mitomycin, the risk of hemolytic syndrome and hematuria increased.
9. The drug combines with triptolide which can lead to accelerate tumor growth in mice, so the combination should be cautious.
10. with allopurinol, the drug may increase liver toxicity.
11. The drug combines with other cytotoxic drugs, increasing the risk of thromboembolism.

Description

In 1966, ICI Pharmaceuticals (now AstraZeneca) first synthesized tamoxifen in the hope of developing a morning-after contraceptive pill. The UK patent for this compound was in place in 1962, whereas the US patent was repeatedly denied until the 1980s. Tamoxifen was approved for a fertility treatment but it was not proven as useful in regulating human contraception. Even though there was a link between estrogen and breast cancer, developing a cancer treatment was not a priority at the time. In 1971, the first clinical study showed a convincing effect of tamoxifen in treating advanced breast cancer. From 1971 to 1977, this drug was neither clinically nor financially remarkable. In 1980s, however, publications first showed that tamoxifen, in addition to chemotherapy, improved survival for patients with early stage breast cancer. In 1998, the meta-analysis by the Oxford-based Early Breast Cancer Trialists’ Collaborative Group showed that tamoxifen did indeed save lives in early breast cancer. In 2001, tamoxifen sales were over $1.024 billion. Since the expiration of the patent in 2002, it is now widely available as a generic drug. By 2004, tamoxifen was the best selling hormonal drug for the treatment of breast cancer.

Chemical Properties

White Crystalline Solid

Originator

Nolvadex,I.C.I.,UK,1973

Uses

Tamoxifen has been used to facilitate the recombination of ect2flox allele in mouse organs91. It has also been used to study its effect on lipopolysaccharide (LPS)-induced microglial activation92.

Uses

Tamoxifen is a selective estrogen response modifier (SERM), protein kinase C inhibitor and anti-angiogenetic factor. Tamoxifen is a prodrug that is metabolized to active metabolites 4-hydroxytamoxifen (4-OHT) and endoxifen by cytochrome P450 isoforms CYP2D6 and CYP3A4. In breast cancer, the gene repressor activity of tamoxifen against ERBB2 is dependent upon PAX2. Blocks estradiol-stimulated VEGF production in breast tumor cells. Protein kinase C inhibitor. Induces apoptosis in human malignant glioma cell lines. Tamoxifen and its metabolite 4-hydroxytamoxifen are selective estrogen response mo difiers (SERMs) that act as estrogen antagonists in mammary gland. Blocks estradiol-stimulated VEGF production in breast tumor cells.

Uses

A nonsteroidal estrogen antagonist of interest in the treatment of some forms of breast cancer. Tamoxifen is a Protein Kinase C inhibitor, and induces apoptosis in human malignant glioma cell lines

Definition

ChEBI: Tamoxifen is a tertiary amino compound and a stilbenoid. It has a role as an estrogen receptor antagonist, a bone density conservation agent, an estrogen receptor modulator, an estrogen antagonist, an angiogenesis inhibitor, an EC 2.7.11.13 (protein kinase C) inhibitor, an EC 1.2.3.1 (aldehyde oxidase) inhibitor and an antineoplastic agent. It derives from a hydride of a stilbene.

Indications

Tamoxifen is a partial estrogen agonist in breast and thus is used as a treatment and chemopreventative for breast cancer. Tamoxifen is a full agonist in bone and endometrium, and prolonged use of tamoxifen leads to a fourfold to fivefold increase in the incidence of endometrial cancer. See Chapter 56 for a detailed discussion of the use of tamoxifen in breast cancer.

Indications

Tamoxifen (Nolvadex) is a synthetic antiestrogen used in the treatment of breast cancer. Normally, estrogens act by binding to a cytoplasmic protein receptor, and the resulting hormone–receptor complex is then translocated into the nucleus, where it induces the synthesis of ribosomal RNA (rRNA) and messenger RNA (mRNA) at specific sites on the DNA of the target cell. Tamoxifen also avidly binds to estrogen receptors and competes with endogenous estrogens for these critical sites. The drug–receptor complex has little or no estrogen agonist activity.Tamoxifen directly inhibits growth of human breast cancer cells that contain estrogen receptors but has little effect on cells without such receptors.

Manufacturing Process

To the Grignard reagent prepared from 0.59 part of magnesium, 3.95 parts of bromobenzene and 50 parts of ether there are added 7.5 parts of 4-(β- dimethylaminoethoxy)-α-ethyldesoxybenzoin in 50 parts of ether. After heating under reflux for 3 hours, the mixture is decomposed by the addition of a solution of 60 parts of ammonium chloride in 150 parts of water. The mixture is separated, and the ethereal layer is dried with anhydrous sodium sulfate, and the ether is evaporated. The residue is crystallized from methanol. There is thus obtained 1-(p-β-dimethylaminoethoxyphenyl)-1,2- diphenylbutan-1-ol, melting point 120°C to 121°C.
2.15 parts of 1-(p-β-dimethylaminoethoxyphenyl)-1,2-diphenylbutan-1-ol, 25 parts of ethanol and 0.8 part of 10 N hydrochloric acid are heated together under reflux for 3 hours. The solution is evaporated to dryness under reduced pressure and the residue is extracted with methylene chloride. The methylene chloride extract is decolorized with charcoal and then evaporated to dryness. The residue is dissolved in 100 parts of water, the solution is basified by the addition of sodium hydroxide solution, and the precipitated solid is extracted three times, each time with 50 parts of ether. The combined extracts are dried with anhydrous sodium sulfate and then evaporated. The residue is crystallized from aqueous methanol, and there is thus obtained 1-(p-β- dimethylaminoethoxyphenyl)-1,2-diphenylbut-1-ene, melting point 95°C to 96°C.

brand name

Nolvadex (AstraZeneca); Soltamox (Savient).

Therapeutic Function

Antiestrogen, Antineoplastic

World Health Organization (WHO)

Tamoxifen is an anti-estrogen agent used mainly to treat breast cancer. Tamoxifen is listed in the WHO Model List of Essential Drugs.

General Description

Tamoxifen is a selective estrogen response modifier (SERM), protein kinase C inhibitor and anti-angiogenetic factor. Tamoxifen is a prodrug that is metabolized to active metabolites 4-hydroxytamoxifen (4-OHT) and endoxifen by cytochrome P450 isoforms CYP2D6 and CYP3A4. In breast cancer, the gene repressor activity of tamoxifen against ERBB2 is dependent upon PAX2. Blocks estradiol-stimulated VEGF production in breast tumor cells.

Biochem/physiol Actions

Protein kinase C inhibitor. Induces apoptosis in human malignant glioma cell lines. Tamoxifen and its metabolite 4-hydroxytamoxifen are selective estrogen response modifiers (SERMs) that act as estrogen antagonists in mammary gland. Blocks estradiol-stimulated VEGF production in breast tumor cells.

Mechanism of action

Tamoxifen is slowly absorbed, and maximum serum levels are achieved 4 to 7 hours after oral administration. The drug is concentrated in estrogen target tissues, such as the ovaries, uterus, vaginal epithelium, and breasts. Hydroxylation and glucuronidation of the aromatic rings are the major pathways of metabolism; excretion occurs primarily in the feces.

Pharmacokinetics

Circulating levels of the demethylated metabolite at steady state are up to twice the level of the parent drug, because the elimination half-life of N-demethyl tamoxifen is 14 days, compared with 7 days for tamoxifen. Tamoxifen demonstrates only weak estrogenic effects at several sites, including the endometrium and bone, and on the lipid profile. Tamoxifen undergoes rapid N-dem ethylation to its major metabolite, N-dem ethyltamoxifen, by CYP3A4 and via CYP2D6 to its minor metabolite, 4-hydroxytam oxifen. Evidence suggests that 4-hydroxytamoxifen is the active metabolite of tamoxifen, with a higher binding affinity than the parent drug for the ER

Clinical Use

Tamoxifen is a SERM that is used as an antiestrogen in the treatment of estrogen-dependent breas Tcancer following prim ary treatment (c hemotherapy and/or surgery).

Side effects

Tamoxifen administration is associated with few toxic side effects, most frequently hot flashes (in 10–20% of patients) and occasionally vaginal dryness or discharge. Mild nausea, exacerbation of bone pain, and hypercalcemia may occur.

Safety Profile

Confirmed human carcinogen. Moderately toxic by ingestion and intraperitoneal routes. Human systemic effects by an unspecified route: nausea or vomiting, leukopenia, thrombocytopenia, and skin changes. An experimental teratogen. Other experimental reproductive effects. Human mutation data reported. When heated to decomposition it emits toxic fumes of NOx.

Synthesis

Tamoxifen, (Z)-2-[p-(1,2-diphenyl-1-butenyl)phenoxy]N,N-dimethylethylamine (28.2.8), is synthesized from |á-ethyldezoxybenzoin. Interaction of this with 4- methoxyphenylmagnesium bromide gives the corresponding carbinol (28.2.5). Its dehydration in acidic conditions gives a derivative of stilbene (28.2.6), and further heating of which with quinidine hydrochloride as a demethylating agent gives 2-[p-(1,2-diphenyl- 1-butenyl)phenol] (28.2.7). The phenolic hydroxyl is further alkylated by dimethylaminoethylchoride using sodium ethoxide as a base, which forms a mixture of E and Z isomers of the final product. The desired Z isomer, tamoxifen (28.2.8) is isolated by fractional crystallization from petroleum ester.

Synthesis_10540-29-1

in vitro

ic50s for growth inhibition ranged from 5.5–10 μm, and were not affected by estrogen. tamoxifen-mediated growth inhibition was not associated with induction of tgf-β. however, tamoxifen treatment was associated with inhibition of pkc, which was followed by induction of p21waf1/cip1, rb dephosphorylation, and g1/s phase cell cycle arrest [1].

in vivo

the tumor cell kinetics of mcf-7 human breast carcinoma xenografts grown in nude mice can be significantly altered by hormonal manipu lation. tamoxifen treatment or e2 deprivation resulted in an approximate doubling of the tpol and an approximately 40% reduction in labeling index as compared to e2-stimulated tumors. an increase in cell loss rate was calculated for both tamoxifen treatment and e2 deprivation [2].

Drug interactions

Potentially hazardous interactions with other drugs
Anticoagulants: effects of coumarins enhanced.
Antidepressants: metabolism of tamoxifen to active metabolite possibly inhibited by fluoxetine and paroxetine - avoid.
Antipsychotics: increased risk of ventricular arrhythmias with droperidol - avoid.
Buproprion: metabolism of tamoxifen to active metabolite possibly inhibited - avoid.
Cinacalcet: metabolism of tamoxifen to active metabolite possibly inhibited - avoid.

IC 50

5.5–10 μm

Carcinogenicity

Tamoxifen is known to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in humans.

Metabolism

Tamoxifen is extensively metabolised by cytochrome P450 isoenzymes, to active metabolites that include N-desmethyltamoxifen, 4-hydroxytamoxifen, and 4-hydroxy-N-desmethyltamoxifen (endoxifen).
Metabolism is by hydroxylation, demethylation and conjugation.
In-vitro studies suggest that both N-desmethyltamoxifen and 4-hydroxytamoxifen are further metabolised to endoxifen.
Elimination occurs, chiefly as conjugates with practically no unchanged drug, principally through the faeces and to a lesser extent through the kidneys.

storage

Room temperature

References

[1] rohlff c, blagosklonny mv, kyle e, kesari a, kim iy, zelner dj, hakim f, trepel j, bergan rc. prostate cancer cell growth inhibition by tamoxifen is associated with inhibition of protein kinase c and induction of p21(waf1/cip1). prostate. 1998 sep 15;37(1):51-9.
[2] jann n. sarkaria, david f. c. gibson, v. craig jordan, john f. fowler, mary j. lindstrom, andr. timothy mulcahy. tamoxifen-induced increase in the potential doubling time of mcf-7 xenografts as determined by bromodeoxyuridine labeling and flow cytometry. cancer research 5.1. 4413-1417, september 15, 1993.
[3] osborne ck. tamoxifen in the treatment of breast cancer. n engl j med. 1998 nov 26;339(22):1609-18.

748-97-0
10540-29-1
Synthesis of Tamoxifen from alpha-[4-[2-(dimethylamino)ethoxy]phenyl]-beta-ethyl-alpha-phenylphenethyl alcohol

Tamoxifen Preparation Products And Raw materials

Raw materials

Preparation Products

Global( 315)Suppliers
Supplier Tel Email Country ProdList Advantage
Hebei Bonster Technology Co.,Limited
+8613315996897 bsterltd.wendy@gmail.com China 796 58
Hubei Harvest Chemical CO.,Ltd
+86-13129915771 +86-15623179893 wendy@hb-harvestchem.com China 931 58
Shandong Huisheng Import & Export Co., Ltd.
+86-13176845580 +86-13176845580 da@zhongda-biotech.com China 248 58
Hong Kong Excellence Biotechnology Co., Ltd.
+86-86-18838029171 +8618126314766 ada@sh-teruiop.com China 892 58
Hebei Mojin Biotechnology Co., Ltd
+8613288715578 sales@hbmojin.com China 12453 58
Wuhan Cell Pharmaceutical Co., Ltd
+86-13129979210 +86-13129979210 sales@cellwh.com China 376 58
Anhui Zhongda Biotechnology Co., Ltd
+8619956560829 justine@zhongda-biotech.com China 300 58
Anhui Ruihan Technology Co., Ltd
+8617756083858 daisy@anhuiruihan.com China 994 58
Hebei Anlijie Biotechnology Co., Ltd
+8619031013551 ably@aljbio.com China 177 58
Nantong Guangyuan Chemicl Co,Ltd
+undefined17712220823 admin@guyunchem.com China 616 58

Related articles

  • The introduction of Tamoxifen
  • Tamoxifen is an antiestrogenic trans isomer of a substituted triphenyl ethylene. This drug is commonly used for treating pre- ....
  • Oct 13,2023

View Lastest Price from Tamoxifen manufacturers

Image Update time Product Price Min. Order Purity Supply Ability Manufacturer
Tamoxifen pictures 2024-04-12 Tamoxifen
10540-29-1
US $3.00-1.00 / kg 1kg 99.9% 10 tons Shanghai Aosiris new Material Technology Co., LTD
Tamoxifen pictures 2024-04-12 Tamoxifen
10540-29-1
US $0.00 / kg 1kg 0.99 10T Shandong Hanjiang Chemical Co., Ltd
Tamoxifen pictures 2024-04-08 Tamoxifen
10540-29-1
US $100.00 / kg 1kg 99.9% 20tons Hong Kong Excellence Biotechnology Co., Ltd.
  • Tamoxifen pictures
  • Tamoxifen
    10540-29-1
  • US $3.00-1.00 / kg
  • 99.9%
  • Shanghai Aosiris new Material Technology Co., LTD
  • Tamoxifen pictures
  • Tamoxifen
    10540-29-1
  • US $0.00 / kg
  • 0.99
  • Shandong Hanjiang Chemical Co., Ltd
  • Tamoxifen pictures
  • Tamoxifen
    10540-29-1
  • US $100.00 / kg
  • 99.9%
  • Hong Kong Excellence Biotechnology Co., Ltd.
(Z)-1-(p-Dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene, trans-2-[4-(1,2-Diphenyl-1-butenyl)phenoxy]-N,N-dimethylethylamine 2-[4-[(Z)-1,2-Di(phenyl)but-1-enyl]phenoxy]-N,N-dimethylethanamine 2-[4-[(Z)-1,2-Diphenyl-1-butenyl]phenoxy]-N,N-dimethylethanamine 2-[p-[(Z)-1,2-Diphenyl-1-butenyl]phenyloxy]-N,N-dimethylethanamine N,N-Dimethyl-2-[p-[(Z)-1,2-diphenyl-1-butenyl]phenoxy]ethanamine C07108 Tamoxifen,(Z)-1-(p-Dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene, trans-2-[4-(1,2-Diphenyl-1-butenyl)phenoxy]-N,N-dimethylethylamine 1-p-β-DiMethylaMinoethoxyphenyl-trans-1,2-diphenylbut-1-ene (Z)-2-(4-(1,2-diphenylbut-1-en-1-yl)phenoxy)-N,N-diMethylethanaMine TaMoxiefen EthanaMine,2-[4-[(1Z)-1,2-diphenyl-1-buten-1-yl]phenoxy]-N,N-diMethyl- (z)-2-(4-(1,2-diphenyl-1-butenyl)phenoxy)phenoxy)-n,n-dimethylethanamine (z)-2-(para-(1,2-diphenyl-1-butenyl)phenoxy)-n,n-dimethylamine 1-para-beta-dimethylaminoethoxyphenyl-trans-1,2-diphenylbut-1-ene 1-p-beta-dimethylaminoethoxyphenyl-trans-1,2-diphenylbut-1-ene Tamoxifen, >=99% Tamoxifen(ICI46,474) (Z)-1-(4-Dimethylaminoethoxyphenyl)-1,2-diphenyl-1-butene TAMOXIFEN TRANS-2-[4-(1,2-DIPHENYL-1-BUTENYL)PHENOXY]-N,N-DIMETHYLETHYLAMINE (Z)-2-[4-(1,2-DIPHENYL-1-BUTENYL)PHENOXY]-N,N-DIMETHYLETHANAMINE [Z]-1-[P-DIMETHYLAMINOETHOXYPHENYL]-1,2-DIPHENYL-1-BUTENE Genox Tamoxen tamoxifen free base Ethanamine, 2-4-(1Z)-1,2-diphenyl-1-butenylphenoxy-N,N-dimethyl- ici47699 n-dimethyl-2-(p-(1,2-diphenyl-1-butenyl)phenoxy)-(z)-ethylamin Nolvadex-D tamoxifen(z) tamoxifendrugstandardsolution trans-tamoxifen (Z)-2-(4-(1,2-diphenylbut-1-en-1-yl)phenoxy)-N,N-dimethylethan-1-amine TAMOXIFEN (ICI 47699) 2-[4-[(1Z)-1,2-Diphenyl-1-buten-1-yl]phenoxy]-N,N-dimethylethanamine Tamoxiphen CAS NO.10540-29-1 Tamoxifen citrate for performance test CRS Tamoxifen citrate CRS Steroids Raw Powder Tamoxife Tamoxifen USP/EP/BP Tamoxifen (1.0 mg/mL in Methanol) Tamoxifen Nolvadex Mammaton Novaldex TAMOXIFEN BASE z-tamoxifen amoxifen 10540-29-1 C26H28NO C6H5CC2H5CC6H5C6H4OCH2CH2NCH32 C25H27NOHCl C26H29NO C2514CH29NO Antibiotics A to Z Antibiotics BioChemical Antibiotics T-Z Aromatics