ChemicalBook
Chinese english Germany Korea

亜鉛 (粉末) [一般有機合成用]

亜鉛 (粉末) [一般有機合成用] 化学構造式
7440-66-6
CAS番号.
7440-66-6
化学名:
亜鉛 (粉末) [一般有機合成用]
别名:
亜鉛 (粉末) [一般有機合成用];C.I.ピグメントブラック16;C.I.ピグメントメタル6;亜鉛;ブルーパウダー;亜鉛末;亜鉛(棒状);亜鉛(大粒);亜鉛(粉末);亜鉛(花状);亜鉛(粒状);亜鉛(切削片状);亜鉛(砂状);金属亜鉛;亜鉛,板状;亜鉛,棒状;亜鉛,粉末;亜鉛,花状;亜鉛,粒状;亜鉛,砂状
英語化学名:
ZINC
英語别名:
Zn;ls2;ls6;ZINC;Zink;65ZN;Jasad;Pasco;mmZinc;zinc6a
CBNumber:
CB0700715
化学式:
Zn
分子量:
65.39
MOL File:
7440-66-6.mol

亜鉛 (粉末) [一般有機合成用] 物理性質

融点 :
420 °C(lit.)
沸点 :
907 °C(lit.)
比重(密度) :
7.14 g/mL at 25 °C
蒸気圧:
1 mm Hg ( 487 °C)
闪点 :
1 °F
貯蔵温度 :
2-8°C
溶解性:
H2O: soluble
外見 :
wire
色:
Silvery-gray
比重:
7.14
電気抵抗率 (resistivity):
5.8 μΩ-cm, 20°C
水溶解度 :
Soluble in water.
Sensitive :
Air & Moisture Sensitive
Merck :
14,10132
安定性::
Stable. Incompatible with amines, cadmium, sulfur, chlorinated solvents, strong acids, strong bases. Air and moisture sensitive. Zinc powder is very flammable.
InChIKey:
HCHKCACWOHOZIP-UHFFFAOYSA-N
CAS データベース:
7440-66-6(CAS DataBase Reference)
NISTの化学物質情報:
Zinc(7440-66-6)
EPAの化学物質情報:
Zinc (7440-66-6)
安全性情報
  • リスクと安全性に関する声明
  • 危険有害性情報のコード(GHS)
主な危険性  N,F,Xi,Xn
Rフレーズ  52/53-50/53-17-15-36/37/38-51/53-36/37-22-19-40-11
Sフレーズ  26-61-60-46-43-36-36/37-16
RIDADR  UN 3264 8/PG 3
WGK Germany  3
RTECS 番号 ZH1400000
3
自然発火温度 460 °C
TSCA  Yes
HSコード  7904 00 00
国連危険物分類  8
容器等級  III
有毒物質データの 7440-66-6(Hazardous Substances Data)
毒性 Zinc is an essential nutrient and is not regarded as toxic. However, the metal fumes, its oxide fumes, and chloride fumes can produce adverse inhalation effects. (See Zinc Oxide and Zinc Chloride, Toxicity) Ingestion of soluble salts can cause nausea.
安衛法 特定化学物質障害予防規則:第3類物質,57,57-2
絵表示(GHS)
注意喚起語 Danger
危険有害性情報
コード 危険有害性情報 危険有害性クラス 区分 注意喚起語 シンボル P コード
H225 引火性の高い液体および蒸気 引火性液体 2 危険 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H250 空気に触れると自然発火 自然発火性液体;自然発火性固体 1 危険 P210, P222, P280, P302+P334,P370+P378, P422
H251 自己発熱;火災のおそれ 自己発熱性化学品 1 危険
H260 水に触れると自然発火するおそれのある可燃性 /引火性ガスを発生 水反応可燃性化学品 1 危険 P223, P231+P232, P280, P335+ P334,P370+P378, P402+P404, P501
H302 飲み込むと有害 急性毒性、経口 4 警告 P264, P270, P301+P312, P330, P501
H319 強い眼刺激 眼に対する重篤な損傷性/眼刺激 性 2A 警告 P264, P280, P305+P351+P338,P337+P313P
H335 呼吸器への刺激のおそれ 特定標的臓器毒性、単回暴露; 気道刺激性 3 警告
H351 発がんのおそれの疑い 発がん性 2 警告 P201, P202, P281, P308+P313, P405,P501
H400 水生生物に強い毒性 水生環境有害性、急性毒性 1 警告 P273, P391, P501
H410 長期的影響により水生生物に非常に強い毒性 水生環境有害性、慢性毒性 1 警告 P273, P391, P501
H411 長期的影響により水生生物に毒性 水生環境有害性、慢性毒性 2
注意書き
P210 熱/火花/裸火/高温のもののような着火源から遠ざ けること。-禁煙。
P222 空気に接触させないこと。
P223 激しい反応と火災の発生の危険があるため、水と接 触させないこと。
P231+P232 湿気を遮断し、不活性ガス下で取り扱うこと。
P273 環境への放出を避けること。
P280 保護手袋/保護衣/保護眼鏡/保護面を着用するこ と。
P305+P351+P338 眼に入った場合:水で数分間注意深く洗うこと。次にコ ンタクトレンズを着用していて容易に外せる場合は外す こと。その後も洗浄を続けること。
P370+P378 火災の場合:消火に...を使用すること。
P403+P235 換気の良い場所で保管すること。涼しいところに 置くこと。
P407 積荷/パレット間にすきまをあけること。
P413 ...kg 以上の大量品は、...0C 以下の 温度で保管すること。
P422 内容物を...中で保管すること。

亜鉛 (粉末) [一般有機合成用] 価格 もっと(150)

メーカー 製品番号 製品説明 CAS番号 包装 価格 更新時間 購入
富士フイルム和光純薬株式会社(wako) W01CPU009521 亜鉛 Granules 1-5 mm/ 99.999%
Zinc Granules 1-5 mm/ 99.999%
7440-66-6 50g ¥21300 2018-12-26 購入
富士フイルム和光純薬株式会社(wako) W01CPU009521 亜鉛 Granules 1-5 mm/ 99.999%
Zinc Granules 1-5 mm/ 99.999%
7440-66-6 250g ¥74100 2018-12-26 購入
東京化成工業 Z0015 亜鉛 (粉末) >96.0%(T)
Zinc (Powder) >96.0%(T)
7440-66-6 300g ¥2000 2018-12-04 購入
関東化学株式会社(KANTO) 19450-2A 亜鉛(粉末)
Zinc, powder
7440-66-6 50g ¥71400 2018-12-13 購入
関東化学株式会社(KANTO) 19450-1A 亜鉛(粉末)
Zinc, powder
7440-66-6 5g ¥12700 2018-12-13 購入

亜鉛 (粉末) [一般有機合成用] 化学特性,用途語,生産方法

外観

銀白色〜灰色, 粒状

定義

本品は、金属元素 Zn である。

溶解性

塩酸、硝酸、硫酸及び水酸化ナトリウム溶液と反応して水素を発生する。

主な性質

  1. 単体亜鉛は青白色の金属で、酸化物及び水酸化物は両性化合物で酸にもアルカリにも溶ける
  2. 鉄に比べて亜鉛の方がイオン化傾向が大きいため、電解中であっても鉄の代わりに亜鉛が溶け出す性質がある(鉄鋼の犠牲防食用メッキ材として必需品)
  3. 〔トタン〕は鉄板に亜鉛メッキしたもの
  4. 融点が比較的低いので銅との合金(快削材料の真ちゅう)の成分に多用される
  5. 鋳造性がよく、ダイス寿命が長く、寸法精度も高いのでダイカスト材に好適
  6. 亜鉛華(ZnO)は塗料、顔料の添加剤に用いられている
  7. 硫化亜鉛に電子線を当てると黄緑色の蛍光を発する性質からブラウン管の蛍光剤として銅と併せて使用している

用途

一般分析、亜鉛化合物製造原料、合金材料。

用途

めっき、薄鋼板、合金の原料

用途

窒素酸化物測定用還元剤。

用途

ひ素分析(グートツァイト法)用。

用途

高純度金属材料。

用途

一般分析、亜鉛化合物合成原料、合金材料。

化粧品の成分用途

酸化防止剤

主な用途

  1. 亜鉛メッキ鋼板(自動車部材、建材構造物、電気機器部材)
  2. 伸銅品(黄銅板、管、棒製品、電子部品)
  3. ダイカスト(自動車部品、機械部品、モーター、おもちゃ、ヘリコプター)
  4. 無機薬品(亜鉛華など/ゴム、塗料)
  5. その他(積層乾電池)

使用上の注意

湿った空気中では自然発火することがある。

化学的特性

Zinc is a soft silvery colored metal; the dust is odorless and gray. It is one of the most common elements in the earth's crust. Metal zinc was first produced in India and China during the middle ages. Industrially important compounds of zinc are zinc chloride (ZnCl2), zinc oxide (ZnO), zinc stearate (Zn(C16H35O2)2), and zinc sulfide (Sphalerite, ZnS) found in hazardous waste sites. It is found in air, soil, and water, and is present in all foods.
Pure zinc
Pure zinc is a bluish-white shiny metal. Zinc has many commercial uses as coatings to prevent rust, in dry-cell batteries, and mixed with other metals to make alloys like brass and bronze. Zinc combines with other elements to form zinc compounds. Zinc compounds are widely used in industry to make paint, rubber, dye, wood preservatives, and ointments.

物理的性質

Bluish-white lustrous metal; brittle at room temperature; malleable between 100 to 150°C; hexagonal close-packed structure; density 7.14 g/cm3; melts at 419.6°C; vaporizes at 907°C; vapor pressure 1 torr at 487°C, 5 torr at 558°C and 60 torr at 700°C; good conductor of electricity, electrical resistivity 5.46 microhm-cm at 0°C and 6.01 microhm-cm at 25°C; surface tension 768 dynes/cm at 600°C; viscosity 3.17 and 2.24 centipoise at 450 and 600°C, respectively; diamagnetic; magnetic susceptibility 0.139x10–6 cgs units in polycrystalline form; thermal neutron absorption cross-section 1.1 barns.

物理的性質

Zinc is a whitish metal with a bluish hue. As an electropositive metal, it readily gives up itstwo outer electrons located in the N shell as it combines with nonmetal elements. Zinc foilwill ignite in moist air, and zinc shavings and powder react violently with acids. Zinc’s meltingpoint is 419.58°C, its boiling point is 907°C, and its density is 7.14 g/cm3.Note: Zinc is not always included as one of the metals in the first series of the transitionelements, but it is the first element in group 12 (IIB).

同位体

There are 38 isotopes of zinc, ranging in atomic weights from Zn-54 to Zn-83.Just four of these are stable, and those four, plus one naturally radioactive isotope (Zn-70) that has a very long half-life (5×10+14 years), make up the element’s existence onEarth. Their proportional contributions to the natural existence of zinc on Earth are assuch: Zn-64 = 48.63%, Zn-66 = 27.90%, Zn-67 = 4.10%, Zn- 68 = 18.75%, and Zn-70 = 0.62%. All the other isotopes are radioactive and artificially produced.

名前の由来

Although ancients used zinc compounds, the name “zinc” is assumed to be derived from the German word zinn, which was related to tin.

天然物の起源

Zinc is the 24th most abundant on Earth, which means it makes up only about 0.007%of the Earth’s crust. Even so, humans have found many uses for it over the past thousands ofyears.It is not found in its pure metallic form in nature but is refined from the mineral (compound) zinc sulfide (ZnSO4) known as the ores sphalerite and zincblende. It is also recoveredfrom minerals and ores known as willemite, hydrozincite, smithsonite, wurtzite, zincite, andFranklinite. Zinc ores are found in Canada, Mexico, Australia, and Belgium, as well as in theUnited States. Valuable grades of zinc ores are mined in Colorado and New Jersey.

特性

Zinc is malleable and can be machined, rolled, die-cast, molded into various forms similarto plastic molding, and formed into rods, tubing, wires, and sheets. It is not magnetic, butit does resist corrosion by forming a hard oxide coating that prevents it from reacting anyfurther with air. When used to coat iron, it protects iron by a process called “galvanic protection,” also known as “sacrificial protection.” This protective characteristic occurs because theair will react with the zinc metal coating, which is a more electropositive (reactive) metal thanis the coated iron or steel, which is less electropositive than zinc. In other words, the zinc isoxidized instead of the underlying metal. (See the section under “Common Uses of Zinc” formore on galvanization.

来歴

Centuries before zinc was recognized as a distinct element, zinc ores were used for making brass. Tubal-Cain, seven generations from Adam, is mentioned as being an “instructor in every artificer in brass and iron.” An alloy containing 87% zinc has been found in prehistoric ruins in Transylvania. Metallic zinc was produced in the 13th century A.D. in India by reducing calamine with organic substances such as wool. The metal was rediscovered in Europe by Marggraf in 1746, who showed that it could be obtained by reducing calamine with charcoal. The principal ores of zinc are sphalerite or blende (sulfide), smithsonite (carbonate), calamine (silicate), and franklinite (zinc, manganese, iron oxide). Canada, Japan, Belgium, Germany, and the Netherlands are suppliers of zinc ores. Zinc is also mined in Alaska, Tennessee, Missouri, and elsewhere in the U.S. Zinc can be obtained by roasting its ores to form the oxide and by reduction of the oxide with coal or carbon, with subsequent distillation of the metal. Other methods of extraction are possible. Naturally occurring zinc contains five stable isotopes. Twenty-five other unstable isotopes and isomers are recognized. Zinc is a bluish-white, lustrous metal. It is brittle at ordinary temperatures but malleable at 100 to 150°C. It is a fair conductor of electricity, and burns in air at high red heat with evolution of white clouds of the oxide. The metal is employed to form numerous alloys with other metals. Brass, nickel silver, typewriter metal, commercial bronze, spring brass, German silver, soft solder, and aluminum solder are some of the more important alloys. Large quantities of zinc are used to produce die castings, used extensively by the automotive, electrical, and hardware industries. An alloy called Prestal?, consisting of 78% zinc and 22% aluminum, is reported to be almost as strong as steel but as easy to mold as plastic. It is said to be so plastic that it can be molded into form by relatively inexpensive die casts made of ceramics and cement. It exhibits superplasticity. Zinc is also extensively used to galvanize other metals such as iron to prevent corrosion. Neither zinc nor zirconium is ferromagnetic; but ZrZn2 exhibits ferromagnetism at temperatures below 35 K. Zinc oxide is a unique and very useful material to modern civilization. It is widely used in the manufacture of paints, rubber products, cosmetics, pharmaceuticals, floor coverings, plastics, printing inks, soap, storage batteries, textiles, electrical equipment, and other products. It has unusual electrical, thermal, optical, and solid- state properties that have not yet been fully investigated. Lithopone, a mixture of zinc sulfide and barium sulfate, is an important pigment. Zinc sulfide is used in making luminous dials, X-ray and TV screens, and fluorescent lights. The chloride and chromate are also important compounds. Zinc is an essential element in the growth of human beings and animals. Tests show that zinc-deficient animals require 50% more food to gain the same weight as an animal supplied with sufficient zinc. Zinc is not considered to be toxic, but when freshly formed ZnO is inhaled a disorder known as the oxide shakes or zinc chills sometimes occurs. It is recommended that where zinc oxide is encountered good ventilation be provided. The commercial price of zinc in January 2002 was roughly 40¢/lb ($90 kg). Zinc metal with a purity of 99.9999% is priced at about $5/g.

使用

zinc is described as an oligo element, trace element, or micro nutrient. Zinc is believed to accelerate wound healing. It is also considered an anti-oxidant, offering protection against uV radiation. It appears to favor the sulfur uptake in sulfurated amino acids and facilitates the incorporation of cysteine, an amino acid, into the skin. It also has a synergistic effect with vitamins A and e. Zinc is a component of more than 70 metal enzymes. It promotes collagen synthesis in the dermis and keratinization of the corneum layer. Zinc is useful for acne treatments because it lowers sebaceous secretion, and is also used in the treatment of psoriasis.

使用

(Zn) A metallic element that functions as a nutrient and dietary supplement. It is believed to be necessary for nucleic acid metabolism, protein synthesis, and cell growth. Sources of include zinc acetate, carbonate, chloride, citrate, gluconate, oxide, stearate, and sulfate. The gluconate form is used in lozenges. The sulfate form exists as prisms, needles, or powder. It has a solubility of 1 g in 0.6 ml of water and is found in frozen egg substitutes.

使用

This bluish white metallic element is found in sphalerite ore that is roasted to give an oxide that is reduced with carbon to make zinc vapor, which is condensed. Elemental zinc foil was occasionally used to decolorize old collodion rich in iodine. The zinc halides were used primarily in collodion emulsions.

使用

Zinc is another earliest known metal. Use of its alloy, brass, dates back to prehistoric times. The metal was produced in India in the 13th century by reducing calamine (a silicate mineral of zinc) with wool. Marggraf produced the metal in 1746 by reducing calamine with charcoal. The element took its name from the German word zink meaning “of obscure origin.” Lohneyes first used this name in 1697. Zinc occurs in nature, widely distributed. The principal ores are sphalerite (and wurtzite) known as zinc blende, ZnS; gahnite, ZnAl2O4; calamine; smithsonite, ZnCO3; franklinite, ZnFe2O4; and zincite, ZnO. Abundance in earth’s crust is about 70 mg/kg and average concentration in sea water is about 10 µg/L. Some important applications of zinc include galvanizing steel; to produce die castings; as a chemical additive in rubber and paints; in dry cells; in making electrodes; and as a reducing agent. Steel is galvanized by a thin coating of zinc to protect it from corrosion. Such galvanized steel is used in buildings, cars, and appliances. High-purity zinc is alloyed with aluminum at varying compositions, along with small amounts of copper and magnesium, to produce die castings. Such die castings are used extensively in automotive, hardware, and electrical industries. Zinc forms numerous alloys including brass, nickel silver, German silver, commercial bronze, soft solder, aluminum solder, and spring brass. The laboratory use of zinc includes preparating hydrogen gas and as a reducing agent in a number of chemical reactions. Zinc salts have numerous uses (See under specific compounds). Zinc is an essential nutrient element required for growth of animals.

使用

Zinc is a constituent of many common alloys,including brass, bronze, Babbit metal, andGerman Silver. It is used to make householdutensils, castings, printing plates, buildingmaterials, electrical apparatus, dry-cell batteriesand many zinc salts. It is also used to galvanize sheet iron, bleaching bone glue andas a reducing agent in many organic reactions.

調製方法

Zinc is widely distributed in nature, constituting 20–200 ppm of the Earth’s crust.The principal zinc ore is in the form of sulfides, such as sphalerite and wurtzite (cubic and hexagonal ZnS) and willemite (Zn2SiO4). To obtain metallic zinc, the zinc ores that are relatively low in zinc content are concentrated. Zinc smelting is gradually being replaced by the electrolytic processes. During smelting there are often large emissions of zinc, and other heavy metals contained in the zinc ore such as lead and cadmium, into the air.

定義

zinc: Symbol Zn. A blue-white metallicelement; a.n. 30; r.a.m. 65.38; r.d.7.1; m.p. 419.88°C; b.p. 907°C. It occursin sphalerite (or zinc blende,ZnS), which is found associated withthe lead sulphide, and in smithsonite(ZnCO3). Ores are roasted to give theoxide and this is reduced with carbon(coke) at high temperature, the zincvapour being condensed. Alternatively,the oxide is dissolved in sulphuricacid and the zinc obtained byelectrolysis. There are five stable isotopes(mass numbers 64, 66, 67, 68,and 70) and six radioactive isotopesare known. The metal is used in galvanizingand in a number of alloys(brass, bronze, etc.). Chemically it is areactive metal, combining with oxygenand other nonmetals and reactingwith dilute acids to releasehydrogen. It also dissolves in alkalis to give zincates. Most of its compoundscontain the Zn2+ ion.

反応性

Zinc exhibits a valence of +2 in all its compounds. It also is a highly electropositive metal. It replaces less electropositive metals from their aqueous salt solutions or melts. For example, a zinc metal bar put into Cu2+ solution acquires a brown-black crust of copper metal deposited on it. At the same time the blue color of the solution fades. Zinc reduces Cu2+ ions to copper metal. The overall reaction is:
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(s)
This spontaneous reaction was used first in 1830 to make a voltaic cell. The metal is attacked by mineral acids. Reactions with sulfuric and hydrochloric acids produce hydrogen. With nitric acid, no hydrogen is evolved but the pentavalent nitrogen is reduced to nitrogen at lower valence states. Zinc is attacked by moist air at room temperature. Dry air has no action at ambient temperatures but the metal combines with dry oxygen rapidly above 225°C. Zinc reacts with carbon dioxide in the presence of moisture at ordinary temperatures forming a hydrated basic carbonate. The metal, on heating with dry halogen gases, yields zinc halides. However, in the presence of moisture the reaction occurs rapidly at ambient temperatures. The metal dissolves in hot solutions of caustic alkalis to form zincates and evolves hydrogen:
Zn + 2NaOH → Na2ZnO2 + H2

一般的な説明

A grayish powder. Insoluble in water. May produce toxic zinc oxide fumes when heated to very high temperatures or when burned. Used in paints, bleaches and to make other chemicals.

空気と水の反応

Can evolve gaseous hydrogen in contact with water or damp air. The heat of the reaction may be sufficient to ignite the hydrogen produced [Haz. Chem. Data 1966. p. 171]. Flammable. May form an explosive mixture with air [Hawley].

反応プロフィール

ZINC METAL is a reducing agent. Reacts violently with oxidants causing fire and explosion hazards [Handling Chemicals Safely 1980. p. 966]. In the presence of carbon, the combination of chlorine trifluoride with zinc results in a violent reaction [Mellor 2, Supp. 1: 1956]. Sodium peroxide oxidizes zinc with incandescence [Mellor 2:490-93 1946-47]. Zinc powder or dust in contact with acids forms hydrogen. The heat generated by the reaction is sufficient to ignite the hydrogen evolved [Lab. Govt. Chemist 1965]. A mixture of powdered zinc and an oxidizing agent such as potassium chlorate or powdered sulfur can be exploded by percussion. Zinc burns in moist chlorine. A mixture of zinc and carbon disulfide reacts with incandescence. Zinc powder reacts explosively when heated with manganese chloride. The reaction between zinc and selenium or tellurium is accompanied by incandescence [Mellor 4:476-480 1946-47]. When zinc and ammonium nitrate are mixed and wetted with a minimum of water, a violent reaction occurs with evolution of steam and zinc oxide. When hydrazine mononitrate is heated in contact with zinc a flaming decomposition occurs at temperatures a little above its melting point. Hydroxylamine is reduced when heated with ZINC, unpredictably ZINC may either ignite and burn or explode [Mellor 8 1946-47].

危険性

As mentioned, zinc dust and powder are very explosive. When zinc shavings are placedin acid or strong alkaline solutions, hydrogen gas is produced, which may explode. Many ofzinc’s compounds are toxic if inhaled or ingested.
A deficiency of zinc in humans will retard growth, both physically and mentally, andcontribute to anemia. It is present in many foods, particularly proteins (meat). A balanceddiet provides an adequate amount of zinc. Not more than 50 milligrams per day of dietaryzinc supplement should be taken, given that high levels of zinc in the body are toxic. Humanbodies contain about two grams of zinc. A deficiency of zinc can cause a lack of taste and candelay growth as well as cause retardation in children.
Zinc intoxication can occur both from inhaling zinc fumes and particles, mainly in industrialprocesses, and from orally ingesting an excess of zinc in dietary supplements. Zinc intoxicationcan cause stomach pains, vomiting, and bleeding. Excess zinc also can cause prematurebirth in pregnant women.

健康ハザード

Zinc and its compounds are relatively non-toxic, but very large doses can produce an acute gastroenteritis characterized by nausea, vomiting, and diarrhea. The recommended dietary allowance (RDA) for zinc is 15 mg/day for men, 12 mg/day for women, 10 mg/day for children, and 5 mg/day for infants. Insuffi cient zinc in the diet can result in a loss of appetite, a decreased sense of taste and smell, slow wound healing and skin sores, or a damaged immune system. Pregnant women with low zinc intake have babies with growth retardation. Exposure to zinc in excess, however, can also be damaging to health. Harmful health effects generally begin at levels from 10–15 times the RDA (in the 100–250 mg/day range). Eating large amounts of zinc, even for a short time, can cause stomach cramps, nausea, and vomiting. Chronic exposures to zinc chloride fumes cause irritation, pulmonary edema, bronchopneumonia, pulmonary fi brosis, and cyanosis. It also causes anemia, pancreas damage, and lower levels of high-density lipoprotein cholesterol. Breathing large amounts of zinc (as dust or fumes) can cause a specifi c short-term disease, called metal fume fever, including disturbances in the adrenal secretion. Information on the possible toxicological effects following prolonged period of exposures to high concentrations of zinc is not known.

火災危険

Produce flammable gases on contact with water. May ignite on contact with water or moist air. Some react vigorously or explosively on contact with water. May be ignited by heat, sparks or flames. May re-ignite after fire is extinguished. Some are transported in highly flammable liquids. Runoff may create fire or explosion hazard.

农业用途

Zinc (Zn) is a bluish-white metal belonging to the 12th Group of the Periodic Table. It occurs naturally as sphalerite, smithsonite, hemimorphite and wurzite, and is extracted by roasting the oxide and reducing with carbon. It is used for galvanizing,

応用例(製薬)

The average human body contains around 2 g of Zn2+. Therefore, zinc (after iron) is the second most abundant d-block metal in the human body. Zinc occurs in the human body as Zn2+ (closed d10 shell configuration), which forms diamagnetic and mainly colourless complexes. In biological systems, zinc ions are often found as the active centre of enzymes, which can catalyse metabolism or degradation processes, and are known to be essential for stabilising certain protein structures that are important for a variety of biological processes.
Already from ancient times, Zn2+ was known to have important biological properties. Zinc-based ointments were traditionally used for wound healing. Low Zn2+ concentrations can lead to a variety of health-related problems especially in connection with biological systems of high Zn2+ demand such as the reproductive system. The daily requirement for Zn2+ is between 3 and 25 mg, depending on the age and circumstances.
The enzymatic function of Zn2+ is based on its Lewis acid activity, which are electron-deficient species. In the following chapters, examples will be shown to further explain this. Carboanhydrase (CA),carboxypeptidase and superoxide dismutase are some examples for well-studied zinc-containing enzymes. The so-called zinc fingers have been discovered because of the crucial role of Zn2+ in the growth of organisms. Within the zinc finger, Zn2+ stabilises the protein structure and therefore enables its biological function.

工業用途

Hot-dipped or galvanized zinc coatings havebeen popular for many years for protecting ferrousproducts because of their ideal combinationof high corrosion protection and low cost.Their corrosion protection stems from threeimportant factors:zinc has a slower rate ofcorrosion than iron,zinc corrosion productsare white and nonstaining, and zinc affordselectrolytic protection to iron.
The amount of protection against corrosiondepends largely upon coating weight — theheavier the coating, the longer the life of the base metal. For example, a coating 0.04 mmthick is expected to have a life of 25 years inrural atmospheres, whereas a 0.88-mm coatingwill last 50 years. The life of zinc coatings maybe five to ten times greater in rural atmospheresthan in industrial atmospheres containing sulfurand acid gases. Nevertheless, the coatings arestill popular for industrial use because of theirlow cost.Hot dipping is particularly valuable for zinccoating parts that cannot conveniently be madeof galvanized sheet. Thus, it is quite popular forstructural parts, castings, bolts, nuts, nails, polelinehardware, heater and condenser coils,windlasses, and many other products.

安全性プロファイル

Human systemic effects by ingestion: cough, dyspnea, and sweating. A human skin irritant. Pure zinc powder, dust, and fume are relatively nontoxic to humans by inhalation. The dfficulty arises from oxidation of zinc fumes immedately prior to inhalation or presence of impurities such as Cd, Sb, As, Pb. Inhalation may cause sweet taste, throat dryness, cough, weakness, generalized aches, chills, fever, nausea, vomiting. Flammable in the form of dust when exposed to heat or flame. May i p t e spontaneously in air when dry. Explosive in the form of dust when reacted with acids. Incompatible with NH4NO3, BaO2, Ba(NO3)2, Cd, CS2, chlorates, Cl2, ClF3, CrO3, (ethyl acetoacetate + tribromoneo- pentyl alcohol), F2, hydrazine mononitrate, hydroxylamine, Pb(N3)2, (Mg + Ba(NO3)2 + BaO2), MnCl2, HNO3, performic acid, KCLO3, KNO3, K2O2, Se, NaClO3, Na2O2, S, Te, H2O2 (NH4)2S, As2O3, CS2, CaCl2, NaOH, chlorinated rubber, catalytic metals, halocarbons, o-nitroanisole, nitrobenzene, nonmetals, oxidants, paint primer base, pentacarbonyliron, transition metal halides, seleninyl bromide. To fight fire, use special mixtures of dry chemical. When heated to decomposition it emits toxic fumes of ZnO. See also ZINC COMPOUNDS.

職業ばく露

Zinc is used most commonly as a protective coating of other metals. In addition, it is used in alloys, such as bronze and brass, for electrical apparatus in many common goods; and in organic chemical extractions and reductions. Zinc chloride is a primary ingredient in smoke bombs used by military for screening purposes, crowd dispersal and occasionally in firefighting exercises by both military and civilian communities. In pharmaceuticals, salts of zinc are used as solubilizing agents in many drugs, including insulin.

Carcinogenicity

Repeated intratesticular injections of zinc chloride to chickens and rats have been reported to produce testicular sarcomas. There is no evidence that zinc compounds are carcinogenic after administration by any other route. Zinc oxide, zinc chloride, and zinc stearate have been classified by the U.S. EPAas belonging to group D.

輸送方法

UN1436 Zinc powder or zinc dust, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material, 4.2-Spontaneously combustible material.

純化方法

Commercial zinc dust (1.2kg) is stirred with 2% HCl (3L) for 1minute, then the acid is removed by filtration, and washed in a 4L beaker with a 3L portion of 2% HCl, three 1L portions of distilled water, two 2L portions of 95% EtOH, and finally with 2L of absolute Et2O. (The wash solutions were removed each time by filtration.) The material is then dried thoroughly, and if necessary, any lumps are broken up in a mortar. [Wagenknecht & Juza Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1067 1965.]

不和合性

Dust is pyrophoric and may self-ignite in air. A strong reducing agent. Violent reaction with oxidizers, chromic anhydride; manganese chloride; chlorates, chlorine and magnesium. Reacts with water and reacts violently with acids, alkali hydroxides; and bases forming highly flammable hydrogen gas. Reacts violently with sulfur, halogenated hydrocarbons and many other substances, causing fire and explosion hazard.

廃棄物の処理

Zinc powder should be reclaimed. Unsalvageable waste may be buried in an approved landfill. Leachate should be monitored for zinc content.

亜鉛 (粉末) [一般有機合成用] 上流と下流の製品情報

原材料

準備製品

アストラゾン ピンク FG 2-メチル-2-イミダゾリン 4-(メチルチオ)ベンジルアミン 9H-キサンテン-9-カルボン酸2-[ビス(1-メチルエチル)アミノ]エチル 5-メチル-2-メチルチオ-4(1H)-ピリミジノン 1-アミノ-4-メチルピペラジン 5-メチルベンゾ[b]チオフェン 2-アントラセンカルボン酸 2-アミノフルオレン 4-クロロ-3,5-ジメチルフェノール 9,10-ジメチルアントラセン 2-(3-メトキシ-4-ヒドロキシフェニル)エチルアミン ジヨード亜鉛 アゾベンゼン 1,1,2-トリフルオロ-2-クロロエテン 2-フェニル-2H-イソインドール-1(3H)-オン 2-(3,5-ジ-tert-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール 3-ピロリン (ピロリジン含む) 9H-キサンテン-9-カルボニトリル アゾイックジアゾコンポーネント20 (ベース) 2-クロロエチルベンズヒドリルエーテル ノナン二酸/モルホリン,(1:x) n-ヘキサデカン 2-フェノキシメチル安息香酸 2-(4-メトキシフェニル)ヒドラジンスルホン酸ナトリウム 1-(4-クロロベンズヒドリル)オキシ-2-クロロエタン 4-エチルピリジン リン化亜鉛 5-ブロモ-2-(メチルチオ)ピリミジン 臭化物 3,4-ジヒドロキシフェニルエチルアミン フィゾスチグミン 1-メチル-1-フェニルヒドラジン N-メチルプロピルアミン 臭化亜鉛 クロロ(メチル)シラン アクリジン

亜鉛 (粉末) [一般有機合成用] 生産企業

Global( 0)Suppliers
名前 電話番号 ファックス番号 電子メール 国籍 製品カタログ 優位度

7440-66-6(亜鉛 (粉末) [一般有機合成用])キーワード:


  • 7440-66-6
  • ZINC, 99.9%ZINC, 99.9%ZINC, 99.9%ZINC, 99.9%
  • ZINC, 99.999%ZINC, 99.999%ZINC, 99.999%ZINC, 99.999%
  • ZINC METAL DUST
  • PLATING SOLUTION Z-100ENC
  • RIEKE(R) ZINC
  • ZINC DUS
  • Rieke?Zinc
  • Zinc 99.9999%
  • zinc coating quality balzers
  • Zinc foil (99.9%) 3N
  • Zinc foil (99.9+%) 3N+
  • Zinc foil (99.98%) 3N8
  • Zinc metal foil
  • Zinc rod (99.99+%) 4N+
  • Zinc rod (99.9999%) 6N
  • Zinc shot (99.99%) 4N
  • Zinc shot (99.999%) 1-5 mm
  • Zinc solution 10 000 ppm
  • Zinc solution 1000 ppm
  • ZincfoilNmmthickcmxcmcagpc
  • ZincfoilNmmthickxcmwidecagcmxcm
  • Zincingot
  • Zinclump
  • ZincmossyNirregularpieces
  • Zincneedles
  • Zincpellets
  • ZincpowderNmesh
  • ZincrodNcmdiacagcm
  • ZincrodNmmdiacagcm
  • ZincshotNmesh
  • 亜鉛 (粉末) [一般有機合成用]
  • C.I.ピグメントブラック16
  • C.I.ピグメントメタル6
  • 亜鉛
  • ブルーパウダー
  • 亜鉛末
  • 亜鉛(棒状)
  • 亜鉛(大粒)
  • 亜鉛(粉末)
  • 亜鉛(花状)
  • 亜鉛(粒状)
  • 亜鉛(切削片状)
  • 亜鉛(砂状)
  • 金属亜鉛
  • 亜鉛,板状
  • 亜鉛,棒状
  • 亜鉛,粉末
  • 亜鉛,花状
  • 亜鉛,粒状
  • 亜鉛,砂状
  • 亜鉛 (粉末)
  • 0.01MOL/L亜鉛溶液
  • 0.05MOL/L亜鉛溶液
  • 0.1MOL/L亜鉛溶液
  • 亜鉛(粒状), 4N
  • 亜鉛,粟状
  • 0.05MOL/L 亜鉛溶液
  • 0.1MOL/L 亜鉛溶液
  • 亜鉛(板状)(150×45×0.3 MM)
  • 亜鉛(粒状)(ひ素分析用)
  • 亜鉛.板状
  • 亜鉛.棒状
  • 亜鉛.粉末
  • 亜鉛.花状
  • 亜鉛.粒状
  • 亜鉛.砂状
  • 亜鉛.削状
  • 亜鉛 GRANULES 1-5 MM/ 99.999%
  • 亜鉛粉末
  • 亜鉛, 粒状
  • 亜鉛, ホイル
  • 亜鉛, 粉末
  • 亜鉛, 花状, 99.9%
  • 亜鉛, 砂状, 99.9%
  • 亜鉛 調整用
  • 亜鉛(不純物)
  • 亜鉛化合物
  • 塩基&添加剤 (鈴木宮浦クロスカップリング)
  • 有機合成化学
  • 構造分類
  • 金属別化合物
  • 鈴木―宮浦クロスカップリング反応
  • 遷移金属化合物
Copyright 2017 © ChemicalBook. All rights reserved