ChemicalBook
Chinese english Germany Korea

オキソチオキソメタン

オキソチオキソメタン 化学構造式
463-58-1
CAS番号.
463-58-1
化学名:
オキソチオキソメタン
别名:
炭素オキシスルフィド;オキソチオキソメタン;オキソチオキソ炭素;オキソメタンチオン;カルボニルスルフィド;硫化カルボニル;酸硫化炭素;酸化硫化炭素
英語化学名:
CARBONYL SULFIDE
英語别名:
COS;thioformin;Oxothioxocarbon;CARBONYL SULFIDE;oxycarbonsulfide;Thioxo-methanone;Oxomethanethione;CARBON OXYSULFIDE;Carbonyl sulphide;Oxycarbon sulfide
CBNumber:
CB4759009
化学式:
COS
分子量:
60.07
MOL File:
463-58-1.mol

オキソチオキソメタン 物理性質

融点 :
−138 °C(lit.)
沸点 :
−50 °C(lit.)
比重(密度) :
1.274; 2.4849
蒸気密度:
2.1 (20 °C, vs air)
蒸気圧:
9034 mm Hg ( 21 °C)
屈折率 :
n 1.3785
外見 :
gas
臭気閾値(Odor Threshold):
0.055ppm
爆発限界(explosive limit):
11.9-29%
水溶解度 :
mL/100mL H2O: 133.3 (0°C), 56.1 (20°C), 40.3 (30°C) [LAN05]; slowly decomposes in H2O [COT88]; soluble alcohol [HAW93]
安定性::
Stable. Corrosive to common metals when moisture is present. Reacts vigorously with oxidants. Flammable. Suck-back into cylinder may cause rupture.
InChIKey:
JJWKPURADFRFRB-UHFFFAOYSA-N
EPAの化学物質情報:
Carbonyl sulfide (463-58-1)
安全性情報
  • リスクと安全性に関する声明
  • 危険有害性情報のコード(GHS)
主な危険性  F,Xn
Rフレーズ  11-20-36/37/38
Sフレーズ  16-26-38
RIDADR  UN 2204 2.3
WGK Germany  3
RTECS 番号 FG6400000
国連危険物分類  2.3
有毒物質データの 463-58-1(Hazardous Substances Data)
毒性 LD50 i.p. in rats: 22.5 mg/kg; LC50 by inhalation (mg/m3): 2940 in mice (35 min); 2650 in rats (4 h) (Bartholomaeus, Haritos)
絵表示(GHS)
注意喚起語 Danger
危険有害性情報
コード 危険有害性情報 危険有害性クラス 区分 注意喚起語 シンボル P コード
H220 極めて可燃性/引火性の高いガス 可燃性/引火性ガス 1 危険 P210, P377, P381, P403
H280 加圧ガス;熱すると爆発のおそれ 高圧ガス 高圧ガス
液化ガス
溶解ガス
警告 P410+P403
H315 皮膚刺激 皮膚腐食性/刺激性 2 警告 P264, P280, P302+P352, P321,P332+P313, P362
H319 強い眼刺激 眼に対する重篤な損傷性/眼刺激 性 2A 警告 P264, P280, P305+P351+P338,P337+P313P
H331 吸入すると有毒 急性毒性、吸入 3 危険 P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H335 呼吸器への刺激のおそれ 特定標的臓器毒性、単回暴露; 気道刺激性 3 警告
注意書き
P210 熱/火花/裸火/高温のもののような着火源から遠ざ けること。-禁煙。
P261 粉じん/煙/ガス/ミスト/蒸気/スプレーの吸入を避ける こと。
P305+P351+P338 眼に入った場合:水で数分間注意深く洗うこと。次にコ ンタクトレンズを着用していて容易に外せる場合は外す こと。その後も洗浄を続けること。
P311 医師に連絡すること。
P410+P403 日光から遮断し、換気の良い場所で保管するこ と。

オキソチオキソメタン 価格

メーカー 製品番号 製品説明 CAS番号 包装 価格 更新時間 購入

オキソチオキソメタン 化学特性,用途語,生産方法

用途

殺虫剤、医薬?除草剤原料 (化学工業日報社)

化学的特性

colourless gas with an unpleasant smell; cylinder

化学的特性

Carbonyl sulfide is a colorless gas or cold liquid.

天然物の起源

Carbonyl sulfide, COS, is now recognized as a component of the atmosphere at a tropospheric concentration of approximately 500 parts per trillion by volume, corresponding to a global burden of about 2.4 million tons. It is, therefore, a significant sulfur species in the atmosphere. It is possible that the HO• radicalinitiated oxidation of COS and carbon disulfide (CS2) would yield 8-12 million tons as S in atmospheric sulfur dioxide per year. Though this is a small yield compared to pollution sources, the HO•-initiated process could account for much of the SO2 burden in the remote troposphere.
Both COS and CS2 are oxidized in the atmosphere by reactions initiated by the hydroxyl radical. The initial reactions are
HO• + COS ® CO2 + HS• (11.10.1)
HO• + CS2 ® COS + HS• (11.10.2)
These reactions with hydroxyl radical initiate oxidation processes that occur through a series of atmospheric chemical reactions. The sulfur-containing products that are initially formed as shown by Reactions 11.10.1 and 11.10.2 undergo further reactions to sulfur dioxide and, eventually, to sulfate species.

使用

Carbonyl sulfide (COS) is a colorless, odorless (when pure) relatively stable gas with a boiling point of -50°C.
There are limited commercial uses of COS. It is produced only in small quantities and used for small-scale experimental purposes and as an intermediate in the synthesis of organic sulfur compounds, thiocarbamate herbicides, and alkyl carbonates. Pesticide manufacturers are believed to be the largest users of COS. Similar to CS2, research conducted by the Stored Grain Research Laboratory at the Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) has shown COS to be an effective soil and grain fumigant for controlling insects on crops such as wheat, barley, oats, and peas, although it is not currently approved for this commercial use.
The use of COS as a fumigant for durable commodities and structures was patented worldwide in 1992 by CSIRO Australia. COS has the potential to replace methyl bromide, being phased out due to its ozone depletion properties, in several of its applications for durable commodities and also to be used as an alternative to phosphine when there is a significant problem with insect resistance.

使用

Grain fumigant.

使用

carbonyl sulfide is use as a fumigant for durable commodities and structures was patented worldwide by Australia in 1992. It is effective on a wide range of pests, including the common stored product species at reasonable concentrations (less than 50 gm-3) and exposure times (1-5 days) . However, the egg stage of several insects showed tolerance to the fumigant. The other problems associated with the use of carbonyl sulfide include its high tainting odour on the treated products and reduction in the germination of seeds. Hydrogen sulphide, an impurity, present in fumigant product supply was reported to be responsible for the off-odour problem. Selective removal of hydrogen sulphide using absorbents like tertiary amine may solve the tainting issues with this fumigant.

定義

ChEBI: A one-carbon compound in which the carbon atom is attached to an oxygen and a sulfur atom via double bonds.

一般的な説明

CARBONYL SULFIDE is a colorless, poisonous, flammable gas with a distinct sulfide odor. The gas is toxic and narcotic in low concentrations and presents a moderate fire hazard. Under prolonged exposure to fire or intense heat the container may rupture violently or rocket. CARBONYL SULFIDE is used in the synthesis of organic thio compounds.

空気と水の反応

Highly flammable.

反応プロフィール

CARBONYL SULFIDE is expected to react with vigor with strong oxidants.

危険性

Narcotic in high concentrations. Flammable, explosive limits in air 12–28.5%. Central nervous system impairment.

健康ハザード

TOXIC; may be fatal if inhaled or absorbed through skin. Contact with gas or liquefied gas may cause burns, severe injury and/or frostbite. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control may cause pollution.

火災危険

Flammable; may be ignited by heat, sparks or flames. May form explosive mixtures with air. Vapors from liquefied gas are initially heavier than air and spread along ground. Vapors may travel to source of ignition and flash back. Some of these materials may react violently with water. Cylinders exposed to fire may vent and release toxic and flammable gas through pressure relief devices. Containers may explode when heated. Ruptured cylinders may rocket. Runoff may create fire or explosion hazard.

安全性プロファイル

Poison by intraperitoneal route. Mildly toxic by inhalation. Narcotic in high concentration. An irritant. May liberate highly toxic hydrogen sulfide upon decomposition. A very dangerous fire hazard and moderate explosion hazard when exposed to heat or flame. Can react vigorously with oxidizing materials. To fight fire, stop flow of gas or use CO2, dry chemical, or water spray. When heated to decomposition it emits toxic fumes of CO. See also CARBONYLS and SULFIDES.

職業ばく露

Carbon oxysulfide is an excellent source of usable atomic sulfur, therefore, it can be used in various chemical syntheses, such as the production of episulfides, alkenylthiols, and vinylicthiols. It is also used to make viscose rayon. It is probable that the largest source of carbon oxysulfide is as a by-product from various organic syntheses and petrochemical processes. Carbon oxysulfide is always formed when carbon, oxygen, and sulfur, or their compounds, such as carbon monoxide; carbon disulfide, and sulfur dioxide, are brought together at high temperatures. Hence, carbon, oxysulfide is formed as an impurity in various types of manufactured gases and as a by-product in the manufacture of carbon disulfide. Carbon oxysulfide is also often present in refinery gases.

環境運命予測

Toxicity from exposure to COS is likely the result of its decomposition to CO2 and H2S. H2S inhibits respiration at the cellular level, causing methemoglobinemia, which inhibits the cytochrome oxidase system, causing cytotoxic anoxia. In one study, rats treated with acetazolamide, an inhibitor of carbonic anhydrase, showed lower blood levels of H2S following exposure to COS and exhibited decreased toxicity. H2S is believed to be primarily responsible for many of the reported adverse effects associated with exposure to COS.
COS reacts readily with ammonia and primary amines to form ammonium thiocarbamate and amine salts of monothiocarbamic acid, respectively. Reaction with two primary amines may result in the formation of H2S and linking of the two amines via a carbonyl group reaction, suggesting considerable potential for protein cross-linking by COS in vivo, and this has been proposed as a mechanism to explain occupational neuropathy observed with CS2, and predicted for COS.

輸送方法

UN2204 Carbonyl sulfide, Hazard Class: 2.3; Labels: 2.3-Poisonous gas, 2.1-Flammable gas, Inhalation Hazard Zone C. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner. Cylinders must be transported in a secure upright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

純化方法

Purify the gas by scrubbing it through three consecutive fritted washing flasks containing conc NaOH at 0o (to remove HCN), and then through conc H2SO4 (to remove CS2) followed by a mixture of NaN3 and NaOH solution; or passed through traps containing saturated aqueous lead acetate, then through a column of anhydrous CaSO4. Then it is freeze-pumped repeatedly and distilled through a trap packed with glass wool and cooled to -130o (using an n-pentane slurry). It liquefies at 0o/12.5mm. Use stainless steel containers. The gas is stored over conc H2SO4. [Glemser in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 654 1963.] TOXIC

Toxicity evaluation

Most of the releases of COS to the environment are to air, where it is believed to have a long residence time. Its half-life in the atmosphere is estimated to be approximately 2 years. It may be degraded in the atmosphere via a reaction with photochemically produced hydroxyl radicals or oxygen, direct photolysis, and other unknown processes related to the sulfur cycle. Sulfur dioxide, a greenhouse gas, is ultimately produced from these reactions. COS is relatively unreactive in the troposphere, but direct photolysis may occur in the stratosphere. Also, plants and soil microorganisms have been reported to remove COS directly from the atmosphere. Plants are not expected to store COS.
COS is extremely mobile in soils. If released to soil, it will volatilize quickly to the atmosphere (Koc= 88). It has a high solubility in water and will not readily adsorb to soil particles, sediment, or suspended organic matter. Therefore, COS is expected to volatilize rapidly from soil and water or, depending on volume, concentration, and site-specific characteristics (e.g., soil type, depth to groundwater, temperature, and humidity), maybe able to move rapidly through the ground and impact groundwater. COS may be hydrolyzed in water to form H2S and CO2.
COS is also actively taken up by some plants and converted to CS2; that is, the atmospheric pathways are reversed, and soils may act as both a net source and a net sink for COS depending on the concentration of COS and the characteristics of the soil. COS is therefore accurately described as a naturally occurring and widely distributed chemical found or produced in the air, soils, live and decomposing vegetation, and food.

不和合性

Carbon oxysulfide can form explosive mixture with air. Incompatible with strong bases. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides.

廃棄物の処理

Return refillable compressed gas cylinders to supplier. Dissolve in a combustible solvent, such as alcohol, benzene, etc. Burn in a furnace with afterburner and scrubber to remove SO2 .

オキソチオキソメタン 上流と下流の製品情報

原材料

準備製品


オキソチオキソメタン 生産企業

Global( 33)Suppliers
名前 電話番号 ファックス番号 電子メール 国籍 製品カタログ 優位度
Hubei Jusheng Technology Co.,Ltd.
86-18871470254
027-59599243 linda@hubeijusheng.com CHINA 28229 58
Hubei xin bonus chemical co. LTD
86-13657291602
027-59338440 linda@hubeijusheng.com CHINA 23035 58
Shandong chuangyingchemical Co., Ltd.
18853181302
sale@chuangyingchem.com CHINA 5917 58
HENAN BON INDUSTRIAL CO.,LTD
0371-55170695
info@hnbon.com CHINA 26742 58
Mainchem Co., Ltd. +86-0592-6210733
+86-0592-6210733 sale@mainchem.com CHINA 32439 55
Chemwill Asia Co.,Ltd. 86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 23975 58
DWS Specialty Gas Co., Ltd 13194677939 0510-6511610-
0510-6511610 shineliu@dwsgases.com China 346 58
Hangzhou J&H Chemical Co., Ltd. 0571-87396432-
0571-87396431 sales@jhechem.com China 13969 53
Chizhou Kailong Import and Export Trade Co., Ltd. Please Email
- xg01_gj@163.com China 9550 50
Sigma-Aldrich 800-8193336 021-61415566-
orderCN@merckgroup.com;orderCN@merckgroup.com China 50837 80

463-58-1(オキソチオキソメタン)キーワード:


  • 463-58-1
  • CARBONYL SULFIDE
  • Carbonyl sulphide
  • CARBON OXYSULFIDE
  • Carbon Oxysulphide
  • Carbon oxide sulfide
  • Carbon oxide sulphide
  • carbonmonoxidemonosulfide
  • carbonoxidesulfide
  • CARBONYL SULFIDE, 97.5+%
  • carbonoxidesulfide(cos)
  • COS
  • Oxo(thioxo)methane
  • Oxycarbon sulfide
  • oxycarbonsulfide
  • Thiocarbonicanhydride
  • thioformin
  • Thioxo-methanone
  • Oxomethanethione
  • Oxothioxocarbon
  • sulfanylidenemethanone
  • 炭素オキシスルフィド
  • オキソチオキソメタン
  • オキソチオキソ炭素
  • オキソメタンチオン
  • カルボニルスルフィド
  • 硫化カルボニル
  • 酸硫化炭素
  • 酸化硫化炭素
Copyright 2017 © ChemicalBook. All rights reserved