이산화질소

이산화질소
이산화질소 구조식 이미지
카스 번호:
10102-44-0
한글명:
이산화질소
동의어(한글):
이산화질소;이산화 질소
상품명:
NITROGEN DIOXIDE
동의어(영문):
Azote;Nitro;Nitrito;NA 1067;NITRICDIOXIDE;Nitrogen oxide;Oxoazane oxide;Stikstofdioxyde;NITROGEN DIOXIDE;Stickstoffdioxid
CBNumber:
CB2283784
분자식:
NO2*
포뮬러 무게:
46.01
MOL 파일:
10102-44-0.mol
MSDS 파일:
SDS

이산화질소 속성

녹는점
−11 °C(lit.)
끓는 점
21 °C(lit.)
밀도
2.62 g/mL at 25 °C(lit.)
증기 밀도
1.58 (21 °C, vs air)
증기압
14.33 psi ( 20 °C)
용해도
reacts with H2O
물리적 상태
갈색 가스
색상
brown gas; equil with NO 4
냄새
0.12ppm에서 감지 가능한 자극적이고 매운 냄새
Odor Threshold
0.12ppm
수용성
물에서 질산으로 분해되어 진한 황산과 질산에 용해되는 산화질소를 방출합니다. [MER06]
노출 한도
TLV-TWA 3 ppm (~6 mg/m3) (ACGIH), ceiling in air 5 ppm (MSHA and OSHA); STEL 5 ppm (ACGIH); IDLH 50 ppm (NIOSH).
CAS 데이터베이스
10102-44-0(CAS DataBase Reference)
EPA
Nitrogen dioxide (10102-44-0)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 T+,O
위험 카페고리 넘버 26-34-8
안전지침서 9-26-28-36/37/39-45
유엔번호(UN No.) UN 1067 2.3
WGK 독일 1
RTECS 번호 QX1575000
DOT ClassificationII 2.3, Hazard Zone A (Gas poisonous by inhalation)
위험 등급 2.3
HS 번호 28112900
유해 물질 데이터 10102-44-0(Hazardous Substances Data)
독성 LC50 inhal (rat)
88 ppm (4 h)
PEL (OSHA)
5 ppm (9 mg/m3; ceiling)
TLV-TWA (ACGIH)
3 ppm (5.6 mg/m3)
STEL (ACGIH)
5 ppm (9.4 mg/m3)
IDLA 13 ppm
기존화학 물질 KE-25995
그림문자(GHS): GHS hazard pictogramsGHS hazard pictogramsGHS hazard pictogramsGHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H270 화재를 일으키거나 강렬하게 함; 산화제 산화성 가스 구분 1 위험 GHS hazard pictograms P220, P244, P370+P376, P403
H314 피부에 심한 화상과 눈에 손상을 일으킴 피부부식성 또는 자극성물질 구분 1A, B, C 위험 GHS hazard pictograms P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H330 흡입하면 치명적임 급성 독성 물질 흡입 구분 1, 2 위험 GHS hazard pictograms P260, P271, P284, P304+P340, P310,P320, P403+P233, P405, P501
H412 장기적 영향에 의해 수생생물에 유해함 수생 환경유해성 물질 - 만성 구분 3 P273, P501
예방조치문구:
P220 의류 그리고 가연성 물질로부터 멀리하시오.
P244 밸브 및 부속품에 그리스와 오일이 묻지 않도록 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
NFPA 704
0
3 0
OX

이산화질소 C화학적 특성, 용도, 생산

개요

nitrogen dioxide is a reddish-brown gas (or yellow liquid) with a strong, acrid odor. Nitrogen dioxide readily dimerizes to produce N2O4.nitrogen dioxide are nonfl ammable, toxic gases.The federal government has established air quality standards for nitrogen dioxide at 0.053 partsper million (ppm), which equals 100μg (micrograms) per cubic meter.Nitrogen dioxide is highly soluble in water and forms nitric acid (HNO3), and nitric oxide is slightly soluble and forms nitrous acid (HNO2).
Nitrogen dioxide is a strong oxidizing agent and causes corrosion.Nitrogen dioxide is used as an oxidizing agent, a catalyst in oxidation reactions, an inhibitor, as a nitrating agent for organic reactions, as a flour bleaching agent, and in increasing the wet strength of paper.

화학적 성질

Nitrogen dioxide (and nitrogen tetroxide, the solid dimer) is a dark brown gas (above 21 C) or a yellow, fuming liquid or colorless solid with a pungent, acrid odor. The solid form is colorless below about 11 C; it is found structurally as N2O4.

물리적 성질

Reddish-brown gas; pungent irritating odor; liquefies to a yellow liquid at 21.2°C; liquefies under pressure to a brown fuming liquid, commercially known as nitrogen tetroxide which actually is an equilibrium mixture of nitrogen dioxide and dinitrogen tetroxide, N2O4; converts to a colorless crystalline solid at -11.2°C; refractive index 1.40 at 20°C; density of gas in air 1.58 (air=1); density of liquid 1.449 g/mL at 20°C; critical temperature 158.2°C; critical pressure 99.96 atm; decomposes in water forming nitric acid; reacts with alkalies; soluble in concentrated nitric and sulfuric acids; soluble in chloroform and carbon disulfide.

출처

Nitrogen dioxide is an intermediate in producing nitric acid. It also is used in the lead chamber process for making sulfuric acid. It is used as a nitrating and oxidizing agent, in rocket fuels, in the manufacture of hemostatic cotton and other oxidized cellulose compounds, and in bleaching flour. Nitrogen dioxide occurs in trace concentrations in the atmosphere due to oxidation of nitric oxide in air. It also is found in exhaust gases of internal combustion engines, in industrial waste gases from plants using nitric acid, and in cigarette smoke. Brown color of smog in many industrial urban areas is attributed to nitrogen dioxide.

역사

nitrogen dioxide was prepared in 1772 by Joseph Priestley (1733–1804) and described in his volumes Experiments and Observations of Different Kinds of Air published between 1774 and 1786. Priestley called nitric oxide nitrous air, nitrogen dioxide nitrous acid vapor, and nitrous oxide phlogisticated nitrous air, but also referred to the dioxide. Priestley prepared nitric oxide by reacting nitric acid with a metal such as copper: 3Cu(s) + 8HNO3(aq) → 2NO(g) + 3Cu(NO3)2(aq) + 4H2O(l).

용도

Nitrogen dioxide is an intermediate in producing nitric acid. It also is used in the lead chamber process for making sulfuric acid. It is used as a nitrating and oxidizing agent, in rocket fuels, in the manufacture of hemostatic cotton and other oxidized cellulose compounds, and in bleaching flour. Nitrogen dioxide occurs in trace concentrations in the atmosphere due to oxidation of nitric oxide in air. It also is found in exhaust gases of internal combustion engines, in industrial waste gases from plants using nitric acid, and in cigarette smoke. Brown color of smog in many industrial urban areas is attributed to nitrogen dioxide.

정의

A brown gas produced by the dissociation of dinitrogen tetroxide (with which it is in equilibrium), the dissociation being complete at 140°C. Further heating causes dissociation to colorless nitrogen monoxide and oxygen:
2NO2(g) = 2NO(g) + O2(g)
Nitrogen dioxide can also be made by the action of heat on metal nitrates (not the nitrates of the alkali metals or some of the alkaline-earth metals).

일반 설명

A reddish brown gas or yellowish-brown liquid when cooled or compressed. Shipped as a liquefied gas under own vapor pressure. Vapors are heavier than air. Toxic by inhalation (vapor) and skin absorption. Noncombustible, but accelerates the burning of combustible materials. Cylinders and ton containers may not be equipped with a safety relief device.

공기와 물의 반응

Combines with oxygen to form NITROGEN DIOXIDE, a brown gas that is deadly poisonous [Merck 11th ed. (1989]. Decomposes in water to form nitric acid and nitric oxide, reacts with alkalis to form nitrate and nitrites [Merck 11th ed. 1989]. The liquid nitrogen oxide is very sensitive to detonation, in the presence of water.

반응 프로필

NITROGEN DIOXIDE (nitrogen peroxide) is a strong oxidizing agent. Powdered aluminum burns in the vapor of carbon disulfide, sulfur dioxide, sulfur dichloride, nitrous oxide, nitric oxide, or nitrogen peroxide [Mellor 5:209-212. 1946-47]. Boron trichloride reacts energetically with nitrogen peroxide, phosphine, or fat and grease [Mellor 5:132. 1946-47]. Nitrogen peroxide and acetic anhydride reacted to form tetranitromethane, but resulted in an explosion [Van Dolah 1967]. Nitrogen peroxide forms explosive mixtures with incompletely halogenated hydrocarbons [Chem. Eng. News 42(47):53. 1964]. During an experiment to produce lactic acid by oxidizing propylene with nitrogen peroxide, a violent explosion occurred. These mixtures (olefins and nitrogen peroxide) form extremely unstable nitrosates or nitrosites [Comp. Rend. 116:756. 1893]. Contact of very cold liquefied gas with water may result in vigorous or violent boiling of the product and extremely rapid vaporization due to the large temperature differences involved. If the water is hot, there is the possibility that a liquid "superheat" explosion may occur. Pressures may build to dangerous levels if liquid gas contacts water in a closed container [Handling Chemicals Safely 1980]. Corrosive to steel when wet, but may be stored in steel cylinders when moisture content is 0.1% or less.

위험도

Inhalation may be fatal. Can react strongly with reducing materials. Lower respiratory tract irritant. Questionable carcinogen.

건강위험

The acute toxicity of nitrogen dioxide by inhalation is high. Inhalation may cause shortness of breath and pulmonary edema progressing to respiratory illness, reduction in the blood's oxygen carrying capacity, chronic lung disorders and death; symptoms may be delayed for hours and may recur after several weeks. Toxic effects may occur after exposure to concentrations of 10 ppm for 10 min and include coughing, chest pain, frothy sputum, and difficulty in breathing. Brief exposure to 200 ppm can cause severe lung damage and delayed pulmonary edema, which may be fatal. Nitrogen dioxide at concentrations of 10 to 20 ppm is mildly irritating to the eyes; higher concentrations of the gas and liquid NO2-N2O4 are highly corrosive to the skin, eyes, and mucous membranes. Nitrogen dioxide can be detected below the permissible exposure limit by its odor and irritant effects and is regarded as a substance with adequate warning properties. Animal testing indicates that nitrogen dioxide does not have carcinogenic or reproductive effects. It does produce genetic damage in bacterial and mammalian cell cultures; however, most studies in animals indicate that it does not produce heritable genetic damage.

인화성 및 폭발성

Nitrogen dioxide is not combustible (NFPA rating = 0) but is a strong oxidizing agent and will support combustion. Cylinders of NO2 gas exposed to fire or intense heat may vent rapidly or explode.

Materials Uses

When dry (0.1 percent moisture or less), nitrogen dioxide is not corrosive to mild steel at ordinary temperatures and pressures. Numerous metals and alloys such as carbon steel, stainless steel, aluminum, nickel, and Inconel are satisfactory for handling and storage. Under wet conditions, stainless steels resistant to about 60 percent nitric acid serve best.
Equipment parts, such as valve stems, which are partly in contact with the atmosphere, should be stainless steel with sufficient chromium content to resist corrosion caused by leaks through stuffing boxes. Good quality ceramic bodies and Pyrex are satisfactory for handling wet or dry nitrogen dioxide.
Among the plastics, Teflon and Kel-F films are most satisfactory. Koroseal and Saran are useful but have a limited service life. In general, the vinyl plastics do not hold up well with nitrogen dioxide. Asbestos and asbestos-graphite are satisfactory for valve stuffing boxes. Koroseal has given reasonably good service in this use. For use on pipe threads, graphite-disodium silicate (waterglass) is recommended, and hydrocarbon lubricants should be avoided.

Safety Profile

Experimental poison by inhalation. Moderately toxic to humans by inhalation. An experimental teratogen. Other experimental reproductive effects. Human systemic effects by inhalation: pulmonary vascular resistance changes, cough, dpspnea, and other pulmonary changes. Mutation data reported. Violent reaction with cyclohexane, F2, formaldehyde, alcohols, nitrobenzene, petroleum, toluene. When heated to decomposition it emits toxic fumes of NOx. See also NITRIC OXIDE.

잠재적 노출

Nitrogen dioxide is found in automotive and diesel emissions. Nitrogen dioxide is an industrial chemical used as an intermediate in nitric and sulfuric acid manufacture; it is used in the nitration of organic compounds; it is used as an oxidizer in liquid propellant rocket fuel combinations. It is also used in firefighting, welding and brazing.

저장

Cylinders of nitrogen dioxide should be stored and used in a continuously ventilated gas cabinet or fume hood.

운송 방법

UN1067/124 Dinitrogen tetroxide, Hazard Class: 2.3; Labels: 2.3-Poisonous gas, 5.1-Oxidizer, 8-Corrosive material, Inhalation Hazard Zone A. UN1975 Nitric oxide and dinitrogen tetroxide mixtures or Nitric oxide and nitrogen dioxide mixtures, Hazard Class: 2.3; Labels: 2.3-Poisonous gas, 5.1-Oxidizer, 8-Corrosive material, Inhalation Hazard Zone A. Cylinders must be transported in a secure upright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

비 호환성

A strong oxidizer. Reacts violently with combustible matter, chlorinated hydrocarbons; ammonia, carbon disulfide; reducing materials. Reacts with water, forming nitric acid and nitric oxide. Attacks steel in the presence of moisture.

폐기물 처리

Destroy by incineration with the addition of hydrocarbon fuel, controlled in such a way that combustion products are elemental nitrogen, CO2, and water. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.

이산화질소 준비 용품 및 원자재

원자재

준비 용품


이산화질소 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved