에페드린

에페드린
에페드린 구조식 이미지
카스 번호:
299-42-3
한글명:
에페드린
동의어(한글):
에페드린;에페드린및그염류
상품명:
Ephedrine
동의어(영문):
Efedrine;Eciphin;Efedrin;(-)-EPHEDRINE;(1R,2S)-(-)-EPHEDRINE;l-Ephedrine Anhydrous;Ephedral;Ephedrate;L-ALPHA-(1-METHYLAMINOETHYL)BENZYL ALCOHOL;Nasol
CBNumber:
CB2341484
분자식:
C10H15NO
포뮬러 무게:
165.24
MOL 파일:
299-42-3.mol
MSDS 파일:
SDS

에페드린 속성

녹는점
37-39 °C(lit.)
끓는 점
255 °C(lit.)
알파
-41 º (c=5, 1M HCl)
밀도
1.124 g/mL at 25 °C(lit.)
굴절률
1.4820 (estimate)
인화점
186 °F
저장 조건
Refrigerator (+4°C)
산도 계수 (pKa)
pKa 8.02 (Uncertain);9.5 (Uncertain)
optical activity
[α]21/D 41°, c = 5 in 1 M HCl
수용성
47.62g/L(25℃)
Merck
13,3639
BRN
2208730
안정성
안정적인. 타기 쉬운. 강산, 산 염화물, 산 무수물, 강산화제와 호환되지 않습니다. 빛에 노출되면 변색될 수 있습니다.
CAS 데이터베이스
299-42-3(CAS DataBase Reference)
NIST
Ephedrine(299-42-3)
EPA
Ephedrine (299-42-3)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xn
위험 카페고리 넘버 22
안전지침서 22-25
WGK 독일 1
RTECS 번호 KB0700000
F 고인화성물질 3-10
위험 참고 사항 Harmful
HS 번호 29394100
유해 물질 데이터 299-42-3(Hazardous Substances Data)
독성 LD50 oral in rat: 600mg/kg
기존화학 물질 KE-23435
그림문자(GHS): GHS hazard pictogramsGHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 GHS hazard pictograms P264, P270, P301+P312, P330, P501
H314 피부에 심한 화상과 눈에 손상을 일으킴 피부부식성 또는 자극성물질 구분 1A, B, C 위험 GHS hazard pictograms P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H317 알레르기성 피부 반응을 일으킬 수 있음 피부 과민성 물질 구분 1 경고 GHS hazard pictograms P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
예방조치문구:
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P270 이 제품을 사용할 때에는 먹거나, 마시거나 흡연하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P301+P312 삼켜서 불편함을 느끼면 의료기관(의사)의 진찰을 받으시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
NFPA 704
2
2 1

에페드린 MSDS


(1R,2S)-(-)-Ephedrine

에페드린 C화학적 특성, 용도, 생산

화학적 성질

white crystals or powder

용도

Ephedrine, 1-phenyl-2-methylaminopropanol, C6H5 CH(OH)CH(NHCH3)CH3, is a white-to-colorless granular substance, unctuous (greasy) to the touch, and hygroscopic. The compound gradually decomposes upon exposure to light. Soluble in water, alcohol, ether, chloroform, and oils, and decomposes above this temperature. Ephedrine is isolated from stems or leaves of Ephedra, especially Ma huang (found in China and India). Medically, it is usually offered as the hydrochloride. In the treatment of bronchial asthma, ephedrine is known as a beta agonist. Compounds of this type reduce obstruction by activating the enzyme adenylate cyclase. This increases intracellular concentrations of cAMP (cyclic 3 5 -adenosine monophosphate) in bronchial smooth muscle and mast cells. Ephedrine is most useful for the treatment of mild asthma. In severe asthma, ephedrine rarely maintains completely normal airway dynamics over long periods. Ephedrine also has been used in the treatment of cerebral transient ischemic attacks, particularly with patients with vertabrobasilar artery insufficiency who have symptoms associated with relatively low blood pressure, or with postural changes in blood pressure. Ephedrine sulfate also has been used in drug therapy in connection with urticaria (hives).

정의

ephedrine: An alkaloid,C6H5CH(OH)CH(CH3)NHCH3 found inplants of the genus Ephedra, onceused as a bronchodilator in the treatmentof asthma. It is also used as astimulant and appetite suppressant.Structurally, it is a phenylethylamineand is similar to amphetamines, althoughless active. It is, however,widely used in the illegal synthesis ofmethamphetamine. The moleculehas two chiral centres. If the stereo- chemical conformations are opposite(i.e. 1R,2S or 1S,1R) the nameephedrine is used. If the conformationsare the same (1R,2R or 1S,2S)then the compound is called pseudoephedrine.

Biological Functions

Ephedrine is a naturally occurring alkaloid that can cross the blood-brain barrier and thus exert a strong CNS-stimulating effect in addition to its peripheral actions.The latter effects are primarily due to its indirect actions and depend largely on the release of norepinephrine. However, ephedrine may cause some direct receptor stimulation, particularly in its bronchodilating effects. Because it resists metabolism by both COMT and MAO, its duration of action is longer than that of norepinephrine. As is the case with all indirectly acting adrenomimetic amines, ephedrine is much less potent than norepinephrine; in addition, tachyphylaxis develops to its peripheral actions. Unlike epinephrine or norepinephrine, however, ephedrine is effective when administered orally.

위험도

Toxic by ingestion.

Mechanism of action

Ephedrine is a naturally occurring sympathomimetic amine that possesses both direct (agonist at α- and β-receptors) and indirect activity via its potentiation of noradrenaline release from sympathetic nerve terminals. It causes an increase in HR, contractility, CO and arterial pressure (systolic > diastolic). Bronchodilation occurs via a β2-mediated mechanism, and it is occasionally used for this purpose. Its duration of action is longer than endogenous catecholamines as it is not metabolised by COMT or MAO. Tachyphylaxis can occur as a result of depletion of noradrenaline from nerve terminals and persistent occupation of adrenergic receptors. Ephedrine crosses the placenta and can increase fetal metabolic rate with a subsequent metabolic acidosis. It is usually administered by i.v. bolus at a dose of 3– 9 mg.

Pharmacology

Ephedrine increases systolic and diastolic blood pressure; heart rate is generally not increased. Contractile force of the heart and cardiac output are both increased. Ephedrine produces bronchial smooth muscle relaxation of prolonged duration when administered orally. Aside from pupillary dilation, ephedrine has little effect on the eye.

Clinical Use

Ephedrine is useful in relieving bronchoconstriction and mucosal congestion associated with bronchial asthma, asthmatic bronchitis, chronic bronchitis, and bronchial spasms. It is often used prophylactically to prevent asthmatic attacks and is used as a nasal decongestant, as a mydriatic, and in certain allergic disorders. Although its bronchodilator action is weaker than that of isoproterenol, its oral effectiveness and prolonged duration of action make it valuable in the treatment of these conditions. Because of their oral effectiveness and greater bronchiolar selectivity, terbutaline and albuterol are replacing ephedrine for bronchodilation.

부작용

Symptoms of overdose are related primarily to cardiac and CNS effects. Tachycardia, premature systoles, insomnia, nervousness, nausea, vomiting, and emotional disturbances may develop. Ephedrine should not be used in patients with cardiac disease, hypertension, or hyperthyroidism.

Safety Profile

A human poison by an unspecified route. An experimental poison by intravenous, subcutaneous, intramuscular, and intraperitoneal routes. Moderately toxic by ingestion and parented routes. Causes rapid pulse, rise in blood pressure, and other actions similar to epinephrine. An experimental teratogen. Used in production of drugs of abuse. Has been known to cause allergic sensitization. When heated to decomposition it emits toxic fumes of NOx.

Purification Methods

Purify (-)-ephedrine by vacuum distillation (dehydrates) and forms waxy crystals or granules, and may pick up 0.5 H2O. The presence of H2O raises its melting point to 40o. [Moore & Taber J Amer Pharm Soc 24 211 1935.] The anhydrous base crystallises from dry ether [Fleming & Saunders J Chem Soc 4150 1955]. It gradually decomposes on exposure to light and is best stored in an inert atmosphere in the dark (preferably at -20o). Its solubility in H2O is 5%, in EtOH it is 1% and it is soluble in CHCl3, Et2O and mineral oils. It has pKa values in H2O of 10.25 (0o) and 8.69 (60o) [Everett & Hyne J Chem Soc 1136 1958, Prelog & H.flinger Helv Chim Acta 33 2021 1950] and pK a 8.84 in 80% aqueous methoxyethanol [Simon Helv Chim Acta 41 1835 1958]. The hydrochloride has m 220o (from EtOH/Et2O) and [] D20 -38.8o (c 2, EtOH). [IR: Chatten & Levi Anal Chem 31 1581 1959.] The anhydrous base crystallises from Et2O [Fleming & Saunders J Chem Soc 4150 1955]. [Beilstein 13 H 373, 13, III 1720, 13 IV 1879.]

에페드린 준비 용품 및 원자재

원자재

준비 용품


에페드린 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved