아르신(기체)

아르신(기체)
아르신(기체) 구조식 이미지
카스 번호:
7784-42-1
한글명:
아르신(기체)
동의어(한글):
아르신;비소화수소,아루신;비화수소;삼수소화비소;아르신(기체);삼수소화비소;비소화 수소;삼수소화 비소;삼수화비소;수소화 비소;수소화 비소 (AsH3);수소화 제일비소
상품명:
ARSINE
동의어(영문):
AsH3;ARSINE;ARSENE;Arsenowodor;Arsenic hydrid;INORGANICARSINE;Arsenic hydride;Arsenwasserstoff;Arsenous hydride;Hydrogen arsenide
CBNumber:
CB4375809
분자식:
AsH3
포뮬러 무게:
77.94542
MOL 파일:
7784-42-1.mol

아르신(기체) 속성

녹는점
-117°
끓는 점
bp -62.5°
밀도
1.321 (estimate)
증기압
>760 mmHg at 20 °C
용해도
slightly soluble in H2O
물리적 상태
무색 가스
색상
무색의
냄새
이 물질의 0.5~1ppm에서는 마늘과 같은 냄새가 감지될 수 있습니다.
수용성
mL/100g H2O(760mm): 42(0°C), 30(10°C), 28(20°C) [LAN05]
노출 한도
TLV-TWA 0.2 mg/m3 (0.05 ppm) (ACGIH and OSHA); 0.002 mg(As)/m3/15 min; ceiling 0.005 ppm(As)/15 min (NIOSH).
Dielectric constant
2.5(-100℃)
안정성
안정적이지만 자연발화성입니다. 일부 기폭제로 폭발할 수 있습니다. 가연성. 산화제, 염소, 질산과 호환되지 않습니다.
EPA
Arsine (7784-42-1)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F+,T+,N
위험 카페고리 넘버 12-26-48/20-50/53
안전지침서 9-16-28-33-36/37-45-60-61
유엔번호(UN No.) 2188
자연 발화 온도 Not established. Decomposes at 232 to 300 °C to form elemental arsenic and hydrogen.
DOT ClassificationII 2.3, Hazard Zone A (Gas poisonous by inhalation)
위험 등급 2.3
유해 물질 데이터 7784-42-1(Hazardous Substances Data)
독성 LCLO inhal (rat) 94 ppm (300 mg/m3; 15 min)
PEL (OSHA) 0.05 ppm (0.2 mg/m3)
TLV-TWA (ACGIH) 0.05 ppm (0.16 mg/m3)
IDLA 3 ppm
기존화학 물질 KE-05-0149
유해화학물질 필터링 97-1-119
중점관리물질 필터링 별표1-133
암, 돌연변이성물질 필터링 17
사고대비 물질 필터링 51
함량 및 규제정보 물질구분: 유독물질; 혼합물(제품)함량정보: 비소 또는 그 화합물과 비소화합물을 0.1% 이상 함유한 혼합물
그림문자(GHS): GHS hazard pictogramsGHS hazard pictogramsGHS hazard pictogramsGHS hazard pictogramsGHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H220 극인화성 가스 인화성 가스 구분 1 위험 GHS hazard pictograms P210, P377, P381, P403
H330 흡입하면 치명적임 급성 독성 물질 흡입 구분 1, 2 위험 GHS hazard pictograms P260, P271, P284, P304+P340, P310,P320, P403+P233, P405, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
H410 장기적 영향에 의해 수생생물에 매우 유독함 수생 환경유해성 물질 - 만성 구분 1 경고 GHS hazard pictograms P273, P391, P501
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P271 옥외 또는 환기가 잘 되는 곳에서만 취급하시오.
P273 환경으로 배출하지 마시오.
P284 호흡 보호구를 착용하시오.
P304+P340 흡입하면 신선한 공기가 있는 곳으로 옮기고 호흡하기 쉬운 자세로 안정을 취하시오.
P310 즉시 의료기관(의사)의 진찰을 받으시오. 삼켰다면 즉시 의료기관(의사)의 도움을 받으시오.
P314 불편함을 느끼면 의학적인 조치·조언을 구하시오.
P320 긴급히 (…) 처치를 하시오.
P377 누출성 가스 화재 시 : 누출을 안전하게 막을 수 없다면, 불을 끄려하지 마시오.
P381 누출의 경우, 모든 점화원을 제거하시오.
P391 누출물을 모으시오.
P403 환기가 잘 되는 곳에 보관하시오.
P403+P233 용기는 환기가 잘 되는 곳에 단단히 밀폐하여 저장하시오.
P405 밀봉하여 저장하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.
NFPA 704
4
4 2

아르신(기체) C화학적 특성, 용도, 생산

개요

Arsine is a colorless, extremely toxic, flammable gas at room temperature and atmospheric pressure and is heavier than air. It has a mild garliclike odor and acts as a blood and nerve poison. It can be fatal if inhaled in sufficient quantity and can form flammable mixtures with air.
Arsine is shipped as a liquefied compressed gas in steel cylinders under its own vapor pressure of 219.7 psia (1515 kPa, abs). Arsine is slightly soluble in both water and organic solvents. It reacts readily with agents such as potassium permanganate, bromine, and sodium hypochlorite to form arsenic compounds. Arsine is stable at room temperature, but begins to decompose into its elements around 446°F to 464°F (230°C to 240°C).

화학적 성질

Arsine is a highly toxic, colorless gas with a garlic odor. It is soluble in water, benzene, and chloroform. It is extremely flammable and explosive when exposed to heat, sparks, or flames. Arsine decomposes on heating and under the infl uence of light and moisture, producing toxic arsenic fumes. Arsine reacts with strong oxidants, causing explosion hazard and may explosively decompose on shock, friction, or concussion. Workers in the metallurgical industry involved in the production process and the maintenance of furnaces, and in the microelectronics industry get exposed to the substance. Arsine is extensively used in semiconductor industries, and in the manufacture of microchips.

물리적 성질

Colorless gas; garlic-like unpleasant odor; liquefies at -55°C; solidifies at -116.3°C; heavier than air; gas density 2.695 (air =1); sparingly soluble in cold water (~ 20 mg/100 g water or about 640 mg/L at the NTP); soluble in chloroform and benzene.

용도

Arsine (AsH3), as a colorless gas, is also known as arsenic hydride. It is used to synthesize organic compounds and as the major ingredient of several military poisons, including the wartime gas lewisite.

정의

A poisonous colorless gas with an unpleasant smell. It decomposes to arsenic and hydrogen at 230°C. It is produced in the analysis for arsenic (Marsh’s test).

제조 방법

Arsine is produced by the reaction of arsenic trichloride, arsenic trioxide or any inorganic arsenic compound with zinc and sulfuric acid. It is also made by treating a solution of sodium arsenide or potassium arsenide in liquid ammonia with ammonium bromide:
Na3As + 3NH4Br → AsH3 + 3NaBr + 3NH3
It may be also prepared by decomposition of alkali metal arsenides by water; or arsenides of other metals with acids:
Ca3As2 + 6 HCl → 2 AsH3 + 3 CaCl2
A poor yield may be obtained if water is substituted for acids. Thus calcium arsenide reacts with water to produce about 15% arsine.

공기와 물의 반응

Highly flammable. On exposure to light, decomposes rapidly depositing shiny black arsenic.

반응 프로필

ARSINE decomposes into its elements (arsenic, gaseous hydrogen) when heated to 300°C. Can form accidentally by the reaction of arsenic impurities with mineral acids (hydrochloric acid, sulfuric acid) in the presence of common metals (iron, zinc). A reducing agent---not oxidized by air at room temperature [Kirk-Othmer, 3rd ed., Vol. 3, 1978, p. 251], but may react vigorously with other oxidizing agents [Sax, 9th ed., 1996, p. 279]. Moderately explosive in combination with chlorine or nitric acid. When heated to decomposition or ignited, ARSINE emits highly toxic fumes of metallic arsenic.

위험도

Highly poisonous by inhalation. Periph- eral nervous system and vacular system impairment, kidney and liver impairment.

건강위험

ARSINE is highly toxic by inhalation; a very short exposure to small quantities may cause death or permanent injury. ARSINE is the most powerful hemolytic poison encountered in industry.

화재위험

Vapors may travel to a source of ignition and flash back. Container may explode in heat of fire. When heated to decomposition, emits highly toxic fumes. Can react vigorously with oxidizing materials. May explode when exposed to chlorine, nitric acid, or potassium plus ammonia. On exposure to light, moist ARSINE decomposes quickly, depositing shiny black arsenic.

인화성 및 폭발성

Arsine is flammable in air, having a lower explosion limit (LEL) of 5.8%. The upper limit has not been determined. Combustion products (arsenic trioxide and water) are less toxic than arsine itself. In the event of an arsine fire, stop the flow of gas if possible without risk of harmful exposure and let the fire burn itself out.

Materials Uses

Arsine is noncorrosive and may, therefore, be used with most of the commercially available metals. However, since arsine is mainly used for the electronics industry, stainless steel is recommended for the gas delivery systems. Stainless steel regulators should be used for all highpurity applications with arsine and arsine mixtures.

Safety Profile

Confirmed human carcinogen. Poison by inhalation. Human red blood cell, gastrointestinal system, central nervous system, and other systemic effects by inhalation. Flammable when exposed to flame. Moderately explosive when exposed to Cl2, HNO3, (K + NH3, open flame, or powerful shock. Dangerous, more toxic than its oxidation product. When heated to decomposition it emits highly toxic fumes of arsenic. See also ARSENIC, ARSENIC COMPOUNDS, and HYDRIDES.

잠재적 노출

Arsine is used in making electronic, semiconductor components; in organic syntheses; and in making lead-acid storage batteries. Arsine may be generated by side reactions or unexpectedly; e.g., it may be generated in metal pickling operations; metal drossing operations; or when inorganic arsenic compounds contact sources of nascent hydrogen. It has been known to occur as an impurity in acetylene. Most occupational exposure occurs in chemical, smelting, and refining industries. It has been used as a poison gas. Cases of exposure have come from workers dealing with zinc, tin, cadmium, galvanized coated aluminum; and silicon and steel metals. A regulated, marked area should be established where this chemical is handled, used, or stored in compliance with OSHA Standard 1910.1045. SA is used as a military poison gas (blood agent). It forms cyanide in the body.

Carcinogenicity

Arsenic has been considered a human carcinogen for a number of years(1),but the mechanisms underlying these processes have remained elusive due in part to the absence of an appropriate animal model. There are a number of hypotheses for the mechanisms of arsenical action that include arsenical inhibition of DNA repair, cocarcinogenesis, and more recently the concept of arsenical production of ROS(65,66) that may act in concert with these mechanisms. It is clear from in vitro mutagenicity test systems that arsenicals are not direct-acting mutagens but rather act via some secondary mechanism(s). Given the long history and knowledge that arsenicals in air and water produce human cancers, this is a remarkable situation with regard to occupational and environmental exposures. Most studies of animals exposed to arsenate or arsenite by the oral route have not detected any clear evidence for an increased incidence of skin cancer or other cancers. Recently, a series of studies presented evidence that inorganic arsenic may be a transplacental carcinogen in animals. Waalkes et al. exposed timed pregnant mice to sodium arsenite in drinking water during gestation days 8–18. Dose-related increases in hepatocellular carcinomas and adrenal tumors in the male offspring and uterine hyperplasia in female offspring from treated dams were reported. The offspring also had increase in the number of malignant tumors. Aberrant estrogen signaling, potentially through inappropriate estrogen receptora, may play a role in the arsenic-induced tumors in these offspring.

환경귀착

Arsine acts predominantly as a hemolytic agent. Hemolysis appears to be dependent on membrane disruption as a result of arsine reactions with sulfhydryl groups and from formation of hydrogen peroxide and adducts with oxyhemoglobin. Failure of the kidneys and other organs is probably not only due to the effects of red blood cell debris slugging within the microcirculation but also to a direct toxic effect on the organs.

저장

cylinders of arsine should be stored and used in a continuously ventilated gas cabinet or fume hood. Local fire codes should be reviewed for limitations on quantity and storage requirements. Carbon steel, stainless steel, Monel?, and Hastelloy ?C are preferred materials for handling arsine; brass and aluminum should be avoided. Kel-F? and Teflon? are preferred gasket materials; Viton? and Nylon? are acceptable.

운송 방법

UN2188 Arsine, Hazard class: 2.3; Labels: 2.3- Poisonous gas, 2.1-Flammable gas, Inhalation Hazard Zone A. Cylinders must be transported in a secure upright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner. Military driver shall be given full and complete information regarding shipment and conditions in case of emergency. AR 50-6 deals specifically with the shipment of chemical agents. Shipments of agent will be escorted in accordance with AR 740-32.

비 호환성

Arsine forms explosive mixture with air. SA reacts with strong oxidizers, nitric acid, causing an explosion hazard. Thermally unstable; shock, friction, and concussion sensitive; can explosively decompose. Can explode on contact with warm, dry air. Violent reaction with acids, halogens, mixtures of potassium and ammonia. Decomposes to metallic arsenic (fumes) on exposure to light, moisture or upon decomposition from heat or ignition.

폐기물 처리

Return refillable compressed gas cylinders to supplier. Arsine may be disposed of by controlled burning. When possible, cylinders should be sealed and returned to suppliers. Seek guidance from regulatory agencies as to proper disposal. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.

주의 사항

Occupational workers should be careful during handling/use of arsine. Workers should use protective gloves: neoprene, butyl rubber, PVC, polyethylene, or Tefl on. Workers should also use appropriate protective equipment. If a leak occurs in a user’s equipment, be certain to purge the piping with an inert gas prior to attempting repairs and evacuate all personnel from the affected area. The compressed gas cylinders should not be refi lled without the express written permission of the owner.

아르신(기체) 준비 용품 및 원자재

원자재

준비 용품


아르신(기체) 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved