ChemicalBook
Chinese English Japanese Germany Korea

폴리에틸렌글리콜#300

폴리에틸렌글리콜#300
폴리에틸렌글리콜#300 구조식 이미지
카스 번호:
25322-68-3
한글명:
폴리에틸렌글리콜#300
동의어(한글):
에틸렌글리콜중합물;에틸렌산화물중합물;에틸렌폴리산화물;옥시란중합물;옥시에틸렌중합물;카르보왁스PEG400;카르보왁스폴리에틸렌글리콜400;폴리(비닐산화물);폴리(에틸렌에테르)글리콜;폴리옥시에틸렌디올;CARBO왁스;PEG(평균분자량400);글리콜스,폴리에틸렌;에틸렌글리콜호모중합물;카르보왁스300;카르보왁스8000;카르보왁스PEG600;카르보왁스폴리에틸렌글리콜600;카르보왁스폴리에틸렌글리콜8000;폴리G
상품명:
Poly(ethylene glycol)
동의어(영문):
PEO;PEG;PEG-8;PEG-4;PEG-7;hm500;peo18;PEG50;400500;dd3002
CBNumber:
CB6145866
분자식:
N/A
포뮬러 무게:
0
MOL 파일:
25322-68-3.mol

폴리에틸렌글리콜#300 속성

녹는점
64-66 °C
끓는 점
>250°C
밀도
1.27 g/mL at 25 °C
증기 밀도
>1 (vs air)
증기압
<0.01 mm Hg ( 20 °C)
굴절률
n20/D 1.469
인화점
270 °C
저장 조건
2-8°C
용해도
H2O: 50 mg/mL, clear, colorless
물리적 상태
waxy solid
색상
White to very pale yellow
Specific Gravity
1.128
수소이온지수(pH)
5.5-7.0 (25℃, 50mg/mL in H2O)
수용성
Soluble in water.
감도
Hygroscopic
최대 파장(λmax)
λ: 260 nm Amax: 0.6
λ: 280 nm Amax: 0.3
Merck
14,7568
안정성
Stable. Incompatible with strong oxidizing agents.
NIST
Polyethylene glycol(25322-68-3)
EPA
Poly(oxy-1,2-ethanediyl), .alpha.-hydro-.omega.-hydroxy- (25322-68-3)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xi,T
위험 카페고리 넘버 36/38-52/53-33-23/24/25
안전지침서 26-36-24/25-61-45-36/37
유엔번호(UN No.) UN2810 - class 6.1 - PG 3 - EHS - Toxic, liquids, organic, n.o.s., HI: all
WGK 독일 3
RTECS 번호 TQ4110000
F 고인화성물질 3-9
자연 발화 온도 581 °F
위험 참고 사항 Harmful
TSCA Yes
HS 번호 39072011
유해 물질 데이터 25322-68-3(Hazardous Substances Data)
독성 LD50 orally in Rabbit: 28000 mg/kg LD50 dermal Rabbit > 20000 mg/kg
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H311 피부와 접촉하면 유독함 급성 독성 물질 - 경피 구분 3 위험 P280, P302+P352, P312, P322, P361,P363, P405, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
H411 장기적 영향에 의해 수생생물에 유독함 수생 환경유해성 물질 - 만성 구분 2
예방조치문구:
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P391 누출물을 모으시오.
P501 ...에 내용물 / 용기를 폐기 하시오.

폴리에틸렌글리콜#300 MSDS


PEG

폴리에틸렌글리콜#300 C화학적 특성, 용도, 생산

용도

세포융합을 일으키는 데 사용하는 중합체. 세포와 세포, 세포와 리보솜 등을 원심침강 등으로 밀착시켜 고농도의 PEG을 작용시키면 막융합을 한다. 혼성세포(hybridoma)를 형성할 때 사용한다. 융합의 기구는 고농도의 PEG에 의한 자유수의 소실에 따른 소수적 상호작용의 저하라는 주장도 있고 불순물의 영향이라는 설도 있다. PEG는 단백질, 핵산 등의 분리를 위한 수용액2층계의 구성성분으로서도 사용한다.

화학적 성질

White waxy crystalline flakes

화학적 성질

The USP32–NF27 describes polyethylene glycol as being an addition polymer of ethylene oxide and water. Polyethylene glycol grades 200–600 are liquids; grades 1000 and above are solids at ambient temperatures.
Liquid grades (PEG 200–600) occur as clear, colorless or slightly yellow-colored, viscous liquids. They have a slight but characteristic odor and a bitter, slightly burning taste. PEG 600 can occur as a solid at ambient temperatures.
Solid grades (PEG>1000) are white or off-white in color, and range in consistency from pastes to waxy flakes. They have a faint, sweet odor. Grades of PEG 6000 and above are available as freeflowing milled powders.

용도

Polyethylene Glycol is a binder, coating agent, dispersing agent, flavoring adjuvant, and plasticizing agent that is a clear, colorless, viscous, hygroscopic liquid resembling paraffin (white, waxy, or flakes), with a ph of 4.0–7.5 in 1:20 concentration. it is soluble in water (mw 1,000) and many organic solvents.

용도

polyethylene glycol (PEG) is a binder, solvent, plasticizing agent, and softener widely used for cosmetic cream bases and pharmaceutical ointments. Pegs are quite humectant up to a molecular weight of 500. Beyond this weight, their water uptake diminishes.

용도

Used in conjunction with carbon black to form a conductive composite.1 Polymer nanospheres of poly(ethylene glycol) were used for drug delivery.2

용도

Poly(ethylene Glycol) molecules of approximately 2000 monomers. Poly(ethylene Glycol) is used in various applications from industrial chemistry to biological chemistry. Recent research has shown PEG m aintains the ability to aid the spinal cord injury recovery process, helping the nerve impulse conduction process in animals. In rats, it has been shown to aid in the repair of severed sciatic axons, helping with nerve damage recovery. It is industrially produced as a lubricating substance for various surfaces to reduce friction. PEG is also used in the preparation of vesicle transport systems in with application towards diagnostic procedures or drug delivery methods.

용도

H2 histamine receptor antagonist, anti-ulcer agent

용도

nonionic emulsifier

용도

A polymer used to precipitate proteins, viruses, DNA and RNA

정의

Any of several condensa-tion polymers of ethylene glycol with thegeneral formula HOCH2(CH2OCH2)nCH2OH orH(OCH2CH2)nOH. Average molecular weightsrange from 200 to 6000. Properties vary with molec-ular weight.

생산 방법

Polyethylene glycol polymers are formed by the reaction of ethylene oxide and water under pressure in the presence of a catalyst.

Indications

Polyethylene glycol (Miralax) is another osmotic laxative that is colorless and tasteless once it is mixed.

상표명

Atpeg 4000 (ICI Americas).

일반 설명

Clear colorless viscous liquid.

공기와 물의 반응

Water soluble.

반응 프로필

Poly(ethylene glycol) is heat-stable and inert to many chemical agents; Poly(ethylene glycol) will not hydrolyze or deteriorate under normal conditions. Poly(ethylene glycol) has a solvent action on some plastics.

화재위험

Poly(ethylene glycol) is combustible.

Pharmaceutical Applications

Polyethylene glycols (PEGs) are widely used in a variety of pharmaceutical formulations, including parenteral, topical, ophthalmic, oral, and rectal preparations. Polyethylene glycol has been used experimentally in biodegradable polymeric matrices used in controlled-release systems.
Polyethylene glycols are stable, hydrophilic substances that are essentially nonirritant to the skin;They do not readily penetrate the skin, although the polyethylene glycols are water-soluble and are easily removed from the skin by washing, making them useful as ointment bases.Solid grades are generally employed in topical ointments, with the consistency of the base being adjusted by the addition of liquid grades of polyethylene glycol.
Mixtures of polyethylene glycols can be used as suppository bases,for which they have many advantages over fats. For example, the melting point of the suppository can be made higher to withstand exposure to warmer climates; release of the drug is not dependent upon melting point; the physical stability on storage is better; and suppositories are readily miscible with rectal fluids. Polyethylene glycols have the following disadvantages: they are chemically more reactive than fats; greater care is needed in processing to avoid inelegant contraction holes in the suppositories; the rate of release of water-soluble medications decreases with the increasing molecular weight of the polyethylene glycol; and polyethylene glycols tend to be more irritating to mucous membranes than fats.
Aqueous polyethylene glycol solutions can be used either as suspending agents or to adjust the viscosity and consistency of other suspending vehicles. When used in conjunction with other emulsifiers, polyethylene glycols can act as emulsion stabilizers. Liquid polyethylene glycols are used as water-miscible solvents for the contents of soft gelatin capsules. However, they may cause hardening of the capsule shell by preferential absorption of moisture from gelatin in the shell.
In concentrations up to approximately 30% v/v, PEG 300 and PEG 400 have been used as the vehicle for parenteral dosage forms. In solid-dosage formulations, higher-molecular-weight polyethylene glycols can enhance the effectiveness of tablet binders and impart plasticity to granules.However, they have only limited binding action when used alone, and can prolong disintegration if present in concentrations greater than 5% w/w. When used for thermoplastic granulations,a mixture of the powdered constituents with 10–15% w/w PEG 6000 is heated to 70–75°C. The mass becomes pastelike and forms granules if stirred while cooling. This technique is useful for the preparation of dosage forms such as lozenges when prolonged disintegration is required. Polyethylene glycols can also be used to enhance the aqueous solubility or dissolution characteristics of poorly soluble compounds by making solid dispersions with an appropriate polyethylene glycol.Animal studies have also been performed using polyethylene glycols as solvents for steroids in osmotic pumps. In film coatings, solid grades of polyethylene glycol can be used alone for the film-coating of tablets or can be useful as hydrophilic polishing materials. Solid grades are also widely used as plasticizers in conjunction with film-forming polymers.The presence of polyethylene glycols in film coats, especially of liquid grades, tends to increase their water permeability and may reduce protection against low pH in enteric-coating films. Polyethylene glycols are useful as plasticizers in microencapsulated products to avoid rupture of the coating film when the microcapsules are compressed into tablets.
Polyethylene glycol grades with molecular weights of 6000 and above can be used as lubricants, particularly for soluble tablets. The lubricant action is not as good as that of magnesium stearate, and stickiness may develop if the material becomes too warm during compression. An antiadherent effect is also exerted, again subject to the avoidance of overheating.
Polyethylene glycols have been used in the preparation of urethane hydrogels, which are used as controlled-release agents. Polyethylene glycol has also been used in insulin-loaded microparticles for the oral delivery of insulin;it has been used in inhalation preparations to improve aerosolization;polyethylene glycol nanoparticles have been used to improve the oral bioavailability of cyclosporine;it has been used in self-assembled polymeric nanoparticles as a drug carrier;and copolymer networks of polyethylene glycol grafted with poly(methacrylic acid) have been used as bioadhesive controlled drug delivery formulations.

Safety Profile

When heated to decomposition it emits acrid smoke and irritating fumes.

Safety

Polyethylene glycols are widely used in a variety of pharmaceutical formulations. Generally, they are regarded as nontoxic and nonirritant materials.
Adverse reactions to polyethylene glycols have been reported, the greatest toxicity being with glycols of low molecular weight. However, the toxicity of glycols is relatively low.
Polyethylene glycols administered topically may cause stinging, especially when applied to mucous membranes. Hypersensitivity reactions to polyethylene glycols applied topically have also been reported, including urticaria and delayed allergic reactions.
The most serious adverse effects associated with polyethylene glycols are hyperosmolarity, metabolic acidosis, and renal failure following the topical use of polyethylene glycols in burn patients. Topical preparations containing polyethylene glycols should therefore be used cautiously in patients with renal failure, extensive burns, or open wounds.
Oral administration of large quantities of polyethylene glycols can have a laxative effect. Therapeutically, up to 4 L of an aqueous mixture of electrolytes and high-molecular-weight polyethylene glycol is consumed by patients undergoing bowel cleansing.
Liquid polyethylene glycols may be absorbed when taken orally, but the higher-molecular-weight polyethylene glycols are not significantly absorbed from the gastrointestinal tract. Absorbed polyethylene glycol is excreted largely unchanged in the urine, although polyethylene glycols of low molecular weight may be partially metabolized.
The WHO has set an estimated acceptable daily intake of polyethylene glycols at up to 10 mg/kg body-weight.
In parenteral products, the maximum recommended concentration of PEG 300 is approximately 30% v/v as hemolytic effects have been observed at concentrations greater than about 40% v/v

저장

Polyethylene glycols are chemically stable in air and in solution, although grades with a molecular weight less than 2000 are hygroscopic. Polyethylene glycols do not support microbial growth, and they do not become rancid.
Polyethylene glycols and aqueous polyethylene glycol solutions can be sterilized by autoclaving, filtration, or gamma irradiation.
Sterilization of solid grades by dry heat at 150℃ for 1 hour may induce oxidation, darkening, and the formation of acidic degradation products. Ideally, sterilization should be carried out in an inert atmosphere. Oxidation of polyethylene glycols may also be inhibited by the inclusion of a suitable antioxidant.
If heated tanks are used to maintain normally solid polyethylene glycols in a molten state, care must be taken to avoid contamination with iron, which can lead to discoloration. The temperature must be kept to the minimum necessary to ensure fluidity; oxidation may occur if polyethylene glycols are exposed for long periods to temperatures exceeding 50℃. However, storage under nitrogen reduces the possibility of oxidation.
Polyethylene glycols should be stored in well-closed containers in a cool, dry place. Stainless steel, aluminum, glass, or lined steel containers are preferred for the storage of liquid grades.

Purification Methods

PEG is available commercially as a powder or as a solution in various degrees of polymerization depending on the average molecular weight, e.g. PEG 400 and PEG 800 have average molecular weights of 400 and 800, respectively. They may be contaminated with aldehydes and peroxides. Solutions deteriorate in the presence of air due to the formation of these contaminants. Methods available for purification are as follows: Procedure A: A 40% aqueous solution of PEG 400 (2L, average molecular weight 400) is de-aerated under vacuum and made 10mM in sodium thiosulfate. After standing for 1hour at 25o, the solution is passed through a column (2.5x20cm) of mixed-bed R-208 resin which has a 5cm layer of Dowex 50-H+ at the bottom of the column. The column was previously flushed with 30% aqueous MeOH, then thoroughly with H2O. A flow rate of 1mL/minute is maintained by adjusting the fluid head. The first 200mL are discarded, and the effluent is then collected at an increased flow rate. The concentration of PEG solution is checked by density measurement, and it is stored (preferably anaerobically) at 15o. Procedure B: A solution of PEG 800 (500g in 805mL H2O) is made 1mM in H2SO4 and stirred overnight at 25o with 10g of treated Dowex 50-H+ (8% crosslinked, 20-50 mesh). The resin, after settling, is filtered off on a sintered glass funnel. The filtrate is treated at 25o with 1.5g of NaBH4 (added over a period of 1minute) in a beaker with tight but removable lid through which a propeller-type mechanical stirrer is inserted and continuously flushed with N2. After 15minutes, 15g of fresh Dowex 50-H+ are added, and the rate of stirring is adjusted to maintain the resin suspended. The addition of an equal quantity of Dowex 50-H+ is repeated and the reaction times are 30 and 40minutes. The pH of a 1 to 10 dilution of the reaction mixture should remain above pH 8 throughout. If it does not, more NaBH4 is added or the addition of Dowex 50-H+ is curtailed. (Some samples of PEG can be sufficiently acidic, at least after the hydrolysis treatment, to produce a pH that is too low for efficient reduction when the above ratio of NaBH4 to Dowex 50-H+ is used.) About 30minutes after the last addition of NaBH4, small amounts of Dowex 50-H+ (~0.2g) are added at 15minute intervals until the pH of a 1 to 10 dilution of the solution is less than 8. After stirring for an additional 15minutes the resin is allowed to settle, and the solution is transferred to a vacuum flask for brief de-gassing under a vacuum. The de-gassed solution is passed through a column of mixed-bed resin as in procedure A. The final PEG concentration would be about 40% w/v. Assays for aldehydes by the purpural method and of peroxides are given in the reference below. Treatment of Dowex 50-H+ (8% crosslinked, 20-50 mesh): The Dowex (500g) is suspended in excess 2N NaOH, and 3mL of liquid Br2 is stirred into the solution. After the Br2 has dissolved, the treatment is repeated twice, and then the resin is washed with 1N NaOH on a sintered glass funnel until the filtrate is colourless. The resin is then converted to the acid form (with dilute HCl, H2SO4 or AcOH as required) and washed thoroughly with H2O and sucked dry on the funnel. The treated resin can be converted to the Na salt and stored. [Ray & Purathingal Anal Biochem 146 307 1985.]

비 호환성

The chemical reactivity of polyethylene glycols is mainly confined to the two terminal hydroxyl groups, which can be either esterified or etherified. However, all grades can exhibit some oxidizing activity owing to the presence of peroxide impurities and secondary products formed by autoxidation.
Liquid and solid polyethylene glycol grades may be incompatible with some coloring agents.
The antibacterial activity of certain antibiotics is reduced in polyethylene glycol bases, particularly that of penicillin and bacitracin. The preservative efficacy of the parabens may also be impaired owing to binding with polyethylene glycols.
Physical effects caused by polyethylene glycol bases include softening and liquefaction in mixtures with phenol, tannic acid, and salicylic acid. Discoloration of sulfonamides and dithranol can also occur, and sorbitol may be precipitated from mixtures. Plastics, such as polyethylene, phenolformaldehyde, polyvinyl chloride, and cellulose-ester membranes (in filters) may be softened or dissolved by polyethylene glycols. Migration of polyethylene glycol can occur from tablet film coatings, leading to interaction with core components.

Regulatory Status

Included in the FDA Inactive Ingredients Database (dental preparations; IM and IV injections; ophthalmic preparations; oral capsules, solutions, syrups, and tablets; rectal, topical, and vaginal preparations). Included in nonparenteral medicines licensed in the UK. Included in the Canadian List of Acceptable Non-medicinal Ingredients.

폴리에틸렌글리콜#300 준비 용품 및 원자재

원자재

준비 용품


폴리에틸렌글리콜#300 공급 업체

글로벌( 522)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 1861 55
Hebei Ruishun Trade Co.,LTD
17052563120
Mike@rsbiology.com CHINA 302 58
Capot Chemical Co.,Ltd.
+86 (0)571-855 867 18
+86 (0)571-858 647 95 sales@capotchem.com China 19918 60
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 Abel@chembj.com CHINA 3194 55
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20672 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32447 55
Chemson Industrial (Shanghai) Co., Ltd.
86-21-65208861-ext8007
86-21-65180813 sales1@chemson.com.cn CHINA 117 58
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30002 58
Biochempartner
0086-13720134139
candy@biochempartner.com CHINA 969 58
Chemwill Asia Co.,Ltd.
86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 23980 58

폴리에틸렌글리콜#300 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved