니오븀

니오븀
니오븀 구조식 이미지
카스 번호:
7440-03-1
한글명:
니오븀
동의어(한글):
니오븀;니오브분;철,합금제조;니오븀(NIOBIUM);나이오븀;나이오븀 원소;컬럼븀
상품명:
NIOBIUM
동의어(영문):
Nb;VN 1;GAAD;NM23;NME1;Niob;NDPKA;NIOBIUM;NB007950;NB005850
CBNumber:
CB6423818
분자식:
Nb
포뮬러 무게:
92.91
MOL 파일:
7440-03-1.mol

니오븀 속성

녹는점
2468 °C (lit.)
끓는 점
4742 °C (lit.)
밀도
8.57 g/mL at 25 °C (lit.)
저장 조건
-20°C
용해도
insoluble in acid solutions
물리적 상태
철사
색상
은회색
Specific Gravity
8.57
비저항
13-16 μΩ-cm, 20°C
수용성
물에 불용성.
Merck
13,6584
노출 한도
ACGIH: TWA 0.5 ppm(2.5 mg/m3); Ceiling 2 ppm (Skin)
OSHA: TWA 3 ppm
NIOSH: IDLH 30 ppm(250 mg/m3); TWA 3 ppm(2.5 mg/m3); Ceiling 6 ppm(5 mg/m3)
안정성
안정적인. 강염기, 강산화제, 할로겐, 산소와 호환되지 않습니다.
CAS 데이터베이스
7440-03-1(CAS DataBase Reference)
EPA
Niobium (7440-03-1)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F,Xi,C
위험 카페고리 넘버 17-36/37/38-40-34-20/21/22
안전지침서 17-36-26-6-45-36/37/39-27
유엔번호(UN No.) UN 1383 4.2/PG 1
WGK 독일 -
RTECS 번호 QT9900000
TSCA Yes
위험 등급 8
포장분류 II
HS 번호 8112993090
독성 LD50 intraperitoneal in mouse: > 10gm/kg
기존화학 물질 2013-3-5602
그림문자(GHS): GHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H228 인화성 고체 인화성 고체 구분 1
구분 2
위험
경고
GHS hazard pictograms P210, P240,P241, P280, P370+P378
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P240 용기와 수용설비를 접지 및 접합시키시오.
P241 폭발 방지용 장비[전기적/환기/조명/...]을(를) 사용하시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
NFPA 704
0
4 0

니오븀 C화학적 특성, 용도, 생산

화학적 성질

Niobium was discovered by Charles Hatchett in 1801 and isolated by Christian Blomstrand of Sweden in 1964. Its name was given after the Greek mythological ?gure Niobe, the daughter of Tantalos; tantalum always was associated with niobium. For many years, the terms “niobium” and “columbium”wereusedinterchangeably;however,thename “niobium” was of?cially adopted by International Union of Pure and Applied Chemistry (IUPAC) in 1950. Niobium is not a very rare element; its crustal abundance is 24ppm, which is similar or greater than those of many common elements, such as lead or cobalt.
Niobium is a shiny white, soft, and malleable metal. The element is inert to HCl, HNO3, or aqua regia at room temperature, slightly soluble in HF, but is attacked by alkali hydroxides or oxidizing agents at all temperatures. In pure form, niobium is ductile, unless it is allowed to associate at elevated temperatures with common gases such as N2,H 2, or O2. Thus, when processed, it must be placed in a protective environment
No data were found in the literature; however, it might be assumed that niobium and most of their compounds are odorless. Niobium pentachloride (NbCl5) has pungent odor, because it decomposes slowly when heated, with Cl2 formation. Niobium in the form of dust is moderately explosive when exposed to ?ame or by chemical reaction.

물리적 성질

Niobium is a soft grayish-silvery metal that resembles fresh-cut steel. It is usually found inminerals with other related metals. It neither tarnishes nor oxidizes in air at room temperaturebecause of a thin coating of niobium oxide. It does readily oxidize at high temperatures(above 200°C), particularly with oxygen and halogens (group 17). When alloyed with tin andaluminum, niobium has the property of superconductivity at 9.25 Kelvin degrees.
Its melting point is 2,468°C, its boiling point is 4,742°C, and its density is 8.57 g/cm3.

Isotopes

There are 49 isotopes of niobium, ranging from Nb-81 to Nb-113. All are radioactiveand made artificially except niobium-93, which is stable and makes up all of theelement’s natural existence in the Earth’s crust.

Origin of Name

Niobium is named after the Greek mythological figure Niobe who was the daughter of Tantalus. Tantalus was a Greek god whose name is the source of the word “tantalize,” which implies torture: he cut up his son to make soup for other gods.

출처

Niobium is the 33rd most abundant element in the Earth’s crust and is considered rare.It does not exist as a free elemental metal in nature. Rather, it is found primarily in severalmineral ores known as columbite (Fe, Mn, Mg, and Nb with Ta) and pyrochlore [(Ca,Na)2Nb2O6 (O, OH, F)]. These ores are found in Canada and Brazil. Niobium and tantalum[(Fe, Mn)(Ta, Nb)2O6] are also products from tin mines in Malaysia and Nigeria. Niobium is a chemical “cousin” of tantalum and was originally purified by its separation through theprocess known as fractional crystallization (separation is accomplished as a result of the differentrates at which some elements crystallize) or by being dissolved in special solvents. Todaymost of the niobium metal is obtained from columbite and pyrochlore through a complicatedrefining process that ends with the production of niobium metal by electrolysis of moltenniobium potassium fluoride (K2NbF7).

역사

Niobium was discovered in 1801 by Hatchett in an ore sent to England more that a century before by John Winthrop the Younger, first governor of Connecticut. The metal was first prepared in 1864 by Blomstrand, who reduced the chloride by heating it in a hydrogen atmosphere. The name niobium was adopted by the International Union of Pure and Applied Chemistry in 1950 after 100 years of controversy. Most leading chemical societies and government organizations refer to it by this name. Some metallurgists and commercial producers, however, still refer to the metal as “Niobium.” Niobium is found in niobite (or columbite), niobite-tantalite, pyrochlore, and euxenite. Large deposits of niobium have been found associated with carbonatites (carbon-silicate rocks), as a constituent of pyrochlore. Extensive ore reserves are found in Canada, Brazil, Congo-Kinshasa, Rwanda, and Australia. The metal can be isolated from tantalum, and prepared in several ways. It is a shiny, white, soft, and ductile metal, and takes on a bluish cast when exposed to air at room temperatures for a long time. The metal starts to oxidize in air at 200°C, and when processed at even moderate temperatures must be placed in a protective atmosphere. It is used in arc-welding rods for stabilized grades of stainless steel. Thousands of pounds of niobium have been used in advanced air frame systems such as were used in the Gemini space program. It has also found use in super-alloys for applications such as jet engine components, rocket subassemblies, and heat-resisting equipment. The element has superconductive properties; superconductive magnets have been made with Nb-Zr wire, which retains its superconductivity in strong magnetic fields. Natural niobium is composed of only one isotope, 93Nb. Forty-seven other isotopes and isomers of niobium are now recognized. Niobium metal (99.9% pure) is priced at about 50¢/g.

Characteristics

Some of niobium’s characteristics and properties resemble several other neighboring elementson the periodic table, making them, as well as niobium, difficult to identify. This isparticularly true for tantalum, which is located just below niobium on the periodic table.
Niobium is not attacked by cold acids but is very reactive with several hot acids such ashydrochloric, sulfuric, nitric, and phosphoric acids. It is ductile (can be drawn into wiresthrough a die) and malleable, which means it can be worked into different forms.

용도

In ferrous metallurgy: Ferroniobium (produced by silicon reduction of columbite) is used to alloy stainless steels and metals for welding rods. In niobium base alloys for high temperatures and nuclear reactions. Niobium has some use as a getter in electronic vacuum tubes.

생산 방법

Theextractingandre?ningprocessesforniobiumfromore are extremely complex and consist of a series of operations, starting from upgrading the ores by concentration. Disruption of the niobium-containing matrix is then performed by an ore-opening procedure with hot HF or fusion with alkali ?uxes. The next steps include pure niobium compound preparation and reduction to metallic niobium, followed by re?ning, consolidation, and fabrication of the metal. Niobium is so closely associated with tantalum that they must be separated by fractional crystallization or by solvent extraction before puri?cation.

정의

The name niobium is officially approved by chemical authorities, but columbium is still used chiefly by metallurgists. Metallic element, atomic number 41, group VB of the periodic table, aw 92.9064, valences of 2, 3, 4, 5; no stable isotopes

위험도

Niobium is not considered reactive at normal room temperatures. However, it is toxic in itsphysical forms as dust, powder, shavings, and vapors, and it is carcinogenic if inhaled or ingested.

Carcinogenicity

No evidence was found that niobiumiscarcinogenic.Indeed,therearesomestudiessuggesting its antitumor activity. In the mouse study of Schroeder et al., occurrence of 23.6% of tumors in the niobiumtreated group (5–6.62ppm niobium in drinking water and diet for a lifetime) versus 34.8% for the controls was documented.

니오븀 준비 용품 및 원자재

원자재

준비 용품


니오븀 공급 업체

글로벌( 207)공급 업체
공급자 전화 이메일 국가 제품 수 이점
Hebei Jingbo New Material Technology Co., Ltd
+8619931165850
hbjbtech@163.com China 1000 58
Henan Tianfu Chemical Co.,Ltd.
+86-0371-55170693 +86-19937530512
info@tianfuchem.com China 21691 55
SIMAGCHEM CORP
+86-13806087780
sale@simagchem.com China 17367 58
ANHUI WITOP BIOTECH CO., LTD
+8615255079626
eric@witopchemical.com China 23556 58
Zhuoer Chemical Co., Ltd
02120970332; +8613524231522
sales@zhuoerchem.com China 3015 58
Henan Alfa Chemical Co., Ltd
+8618339805032
alfa4@alfachem.cn China 12755 58
Alfa Chemistry
+1-5166625404
Info@alfa-chemistry.com United States 21317 58
LEAP CHEM CO., LTD.
+86-852-30606658
market18@leapchem.com China 24738 58
henan kanbei chemical co.,ltd
+undefined-86-1523780-4566 +undefined15237804566
henankanbeichemical@163.com China 511 58
Aladdin Scientific
+1-833-552-7181
sales@aladdinsci.com United States 57511 58

니오븀 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved