ChemicalBook
Chinese English Japanese Germany Korea

아닐린

아닐린
아닐린 구조식 이미지
카스 번호:
62-53-3
한글명:
아닐린
동의어(한글):
아닐린;벤젠아민;아니빔BENZAMINE;아닐린오일;아미노펜;청색오일;페닐아민;아미노벤젠;아닐린,그염류및그할로겐화유도체및설폰화유도체;유카인
상품명:
Aniline
동의어(영문):
Anyvim;Kyanol;Anilin;blueoil;ci76000;Anilina;ANILINE;Benzidam;Blue Oil;benzamine
CBNumber:
CB7169544
분자식:
C6H7N
포뮬러 무게:
93.13
MOL 파일:
62-53-3.mol

아닐린 속성

녹는점
-6.2 °C
끓는 점
184 °C(lit.)
밀도
1.022 g/mL at 25 °C(lit.)
증기 밀도
3.22 (185 °C, vs air)
증기압
0.7 mm Hg ( 25 °C)
굴절률
n20/D 1.586(lit.)
인화점
76 °C
저장 조건
2-8°C
용해도
water: soluble
물리적 상태
Liquid
산도 계수 (pKa)
4.63(at 25℃)
색상
APHA: ≤250
Specific Gravity
1.021
냄새
Sweet, amine-like odor detectable at 0.6 to 10 ppm
상대극성
0.42
수소이온지수(pH)
8.8 (36g/l, H2O, 20℃)
폭발한계
1.2-11%(V)
수용성
36 g/L (20 ºC)
Merck
14,659
BRN
605631
Henry's Law Constant
1.91 at 25 °C (thermodynamic method-GC/UV spectrophotometry, Altschuh et al., 1999)
노출 한도
TLV-TWA skin 2 ppm (~8 mg/m3) (ACGIH), 5 ppm (~19 mg/m3) (MSHA, OSHA, and NIOSH); IDLH 100 ppm (NIOSH).
안정성
Stable. Incompatible with oxidizing agents, bases, acids, iron and iron salts, zinc, aluminium. Light sensitive. Combustible.
CAS 데이터베이스
62-53-3(CAS DataBase Reference)
NIST
Aniline(62-53-3)
EPA
Benzenamine(62-53-3)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 T,N,F
위험 카페고리 넘버 23/24/25-40-41-43-48/23/24/25-50-68-48/20/21/22-39/23/24/25-11
안전지침서 26-27-36/37/39-45-46-61-63-36/37-16
유엔번호(UN No.) UN 1547 6.1/PG 2
WGK 독일 2
RTECS 번호 BW6650000
F 고인화성물질 8-9
자연 발화 온도 615 °C
TSCA Yes
HS 번호 2921 41 00
위험 등급 6.1
포장분류 II
유해 물질 데이터 62-53-3(Hazardous Substances Data)
독성 LD50 orally in rats: 0.44 g/kg (Jacobson)
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H227 가연성 액체 인화성 액체 구분 4 경고 P210, P280, P370+P378, P403+P235,P501
H301 삼키면 유독함 급성 독성 물질 - 경구 구분 3 위험 P264, P270, P301+P310, P321, P330,P405, P501
H311 피부와 접촉하면 유독함 급성 독성 물질 - 경피 구분 3 위험 P280, P302+P352, P312, P322, P361,P363, P405, P501
H317 알레르기성 피부 반응을 일으킬 수 있음 피부 과민성 물질 구분 1 경고 P261, P272, P280, P302+P352,P333+P313, P321, P363, P501
H318 눈에 심한 손상을 일으킴 심한 눈 손상 또는 자극성 물질 구분 1 위험 P280, P305+P351+P338, P310
H330 흡입하면 치명적임 급성 독성 물질 흡입 구분 1, 2 위험 P260, P271, P284, P304+P340, P310,P320, P403+P233, P405, P501
H331 흡입하면 유독함 급성 독성 물질 흡입 구분 3 위험 P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H341 유전적인 결함을 일으킬 것으로 의심됨 (노출되어도 생식세포 유전독성을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 생식세포 변이원성 물질 구분 2 경고 P201,P202, P281, P308+P313, P405,P501
H351 암을 일으킬 것으로 의심됨 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 2 경고 P201, P202, P281, P308+P313, P405,P501
H370 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 1회 노출 구분 1 위험 P260, P264, P270, P307+P311, P321,P405, P501
H372 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴 특정 표적장기 독성 - 반복 노출 구분 1 위험 P260, P264, P270, P314, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
H400 수생생물에 매우 유독함 수생 환경유해성 물질 - 급성 구분 1 경고 P273, P391, P501
H410 장기적 영향에 의해 수생생물에 매우 유독함 수생 환경유해성 물질 - 만성 구분 1 경고 P273, P391, P501
H412 장기적 영향에 의해 수생생물에 유해함 수생 환경유해성 물질 - 만성 구분 3 P273, P501
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P270 이 제품을 사용할 때에는 먹거나, 마시거나 흡연하지 마시오.
P271 옥외 또는 환기가 잘 되는 곳에서만 취급하시오.
P272 작업장 밖으로 오염된 의복을 반출하지 마시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P284 호흡 보호구를 착용하시오.
P391 누출물을 모으시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P307+P311 노출된 경우,독성 물질 센터 또는 의사에게 전화하기
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
P403+P233 용기는 환기가 잘 되는 곳에 단단히 밀폐하여 저장하시오.

아닐린 C화학적 특성, 용도, 생산

물성

순수한 아닐린은 상온에서 특유의 냄새가 나고 무색투명한 액체 상태로 존재한다. 그러나 공기 중에서는 서서히 붉게 변하고 마지막에는 불투명한 흑색으로 변하게 된다. 끓는점은 184°C, 녹는점은 -6°C이다. 밀도는 1.0215g/ml이다. 인화점은 76°C이다. 물에는 약간 녹고 에탄올, 에테르, 벤젠 등의 유기 용매에는 잘 녹는다. 알칼리 금속이나 알칼리 토금속을 아닐린에 녹이면 수소가 발생하면서 C6H5HNNa 등의 금속 화합물이 생성된다.

용도

아닐린은 다음과 같은 용도로 사용된다. 용매: 구두약, 향료의 제조 원료. 우레탄 중합체의 원료. 제초제, 살충제, 곰팡이 제거제의 원료. 알루미늄, 크롬(III), 철(III), 납 등의 정량 시약.

안전성

아닐린은 강력한 독성이 있기 때문에 취급에 주의해야 한다. 아닐린은 헤모글로빈과 결합하여 산소의 운반을 방해한다. 지속적인, 또는 반복적인 노출은 식욕감소, 빈혈, 체중감소, 신경계 이상, 신장 이상, 간이나 연골의 손상을 야기할 수 있다. 흡입하거나 피부를 통해서 흡수될 경우 중독을 일으킬 수 있다. 아닐린을 보관할 때는 마개를 단단히 막아 어두운 곳에 두어야 한다.

화학적 성질

Aniline,C6H5NH2, is slightly soluble in water,miscible in alcohol and ether,and turns yellow to brown in air. Aniline may be made(1) by the reduction, with iron or tin in HCI, of nitrobenzene, and(2) by the amination of chlorobenzene by heating with ammonia to a high temperature corresponding to a pressure of over 200 atmospheres in the presence of a catalyst(a mixture of cuprous chlorideandoxide).Aniline is the end point of reduction of most mononitrogen substituted benzene nuclei,as nitro benzene beta-phenyl hydroxylamine, azoxybenzene, azobenzene, hydrazobenzene. Aniline is detected by the violet coloration produced by a small amountof sodium hypochlorite. Aniline is used as a solvent, in the preparation of compound in the manufacture of dyes and their intermediates, and in the manufacture of medicinal chemicals.

화학적 성질

Aniline was fi rst isolated from the destructive distillation of indigo in 1826 by Otto Unverdorben. Aniline is oily and, although colorless, it slowly oxidizes and turns into a kind of resin in air, giving the sample a red-brown tint. At room temperature, aniline, the simplest aromatic amine, is a clear to slightly yellow, oily liquid that darkens to a brown color on exposure to air. Like most volatile amines, it possesses the somewhat unpleasant odor of rotten fi sh and also has a burning aromatic taste. It has a low vapor pressure at room temperature and ignites readily, burning with a smoky flame. It does not readily evaporate at room temperature. Aniline is slightly soluble in water and mixes readily with most organic solvents. It is synthesized by catalytic hydrogenation of nitrobenzene or by ammonolysis of phenol. Aniline is incompatible with strong acids, strong oxidizers, albumin, and solutions of iron, zinc, aluminum, toluene diisocyanate, and alkalis. It ignites spontaneously in the presence of red fuming nitric acid, and with sodium. Originally, the great commercial value of aniline was due to the readiness with which it yields, directly or indirectly, valuable dyestuffs. Currently, the largest market for aniline is in the preparation of methylene diphenyl diisocyanate (MDI), some 85% of aniline serving this market. In fact, in industry, aniline is an initiator or intermediary in the synthesis of aniline being used as a precursor to more complex chemicals. It is the starting material for many dyestuffs, known as aniline dyes. Its main application is in the manufacture of polyurethane foam, and a wide variety of products, such as MDI, agricultural chemicals, synthetic dyes, antioxidants, stabilizers for the rubber industry, varnishes, explosives, analgesics, and hydroquinone for photographic developing, and as an octane booster in gasoline. Aniline has also been detected in tobacco smoke and exposures to aniline have been reported among workers in related industrial workplaces, hazardous waste sites, and the general population through food and drinking water.

화학적 성질

Aniline is a clear, colorless, oily liquid that darkens on exposure to light; with a characteristic amine-like odor.

물리적 성질

Colorless, oily liquid with a faint ammonia-like odor and burning taste. Gradually becomes yellow to reddish-brown on exposure to air or light. The lower and upper odor thresholds are 2 and 128 ppm, respectively (quoted, Keith and Walters, 1992). An odor threshold of 1.0 ppmv was reported by Leonardos et al. (1969).

용도

Rubber accelerators and antioxidants, dyes and intermediates, photographic chemicals (hydro- quinone), isocyanates for urethane foams, pharma- ceuticals, explosives, petroleum refining, dipheny- lamine, phenolics, herbicides, fungicides.

용도

A thin, colorless oil prepared by reducing benzene with iron filings in the presence of hydrochloric or acetic acid and then separating the aniline formed by distillation. It is slightly soluble in water but dissolves easily in alcohol, ether, and benzene. Aniline is the base for many dyes used to increase the sensitivity of emulsions.

용도

Aniline is used in the manufacture of dyes,pharmaceuticals, varnishes, resins, photo graphic chemicals, perfumes, shoe blacks,herbicides, and fungicides. It is also usedin vulcanizing rubber and as a solvent. Itoccurs in coal tar and is produced from thedry distillation of indigo. It is also producedfrom the biodegradation of many pesticides.Aniline is a metabolite of many toxic com pounds, such as nitrobenzene, phenacetin,and phenylhydroxylamine.

정의

(aminobenzene; phenylamine; C6H5NH2) A colorless oily substance made by reducing nitrobenzene ( C6H5NO2). Aniline is used for making dyes, pharmaceuticals, and other organic compounds.

생산 방법

Aniline was obtained in 1826 by Unverdorben from distillation of indigo and was given the name aniline in 1841 by Fritzsche (Windholz et al 1983). The chemical was manufactured in the U. S. by the Bechamp reaction involving reduction of nitrobenzene in the presence of either copper/silica or hydrochloric acid/ferrous chloride catalysts; but in 1966, amination of chlorobenzene with ammonia was introduced (IARC 1982; Northcott 1978). Currently, aniline is produced in the U.S., several European countries and Japan by the catalytic hydrogenation of nitrobenzene in either the vapor phase or solvent system. This chemical is also produced by reacting phenol with ammonia (HSDB 1989). Production in 1982 amounted to 331,000 tons (HSDB 1989).

정의

ChEBI: A primary arylamine in which an amino functional group is substituted for one of the benzene hydrogens.

일반 설명

A yellowish to brownish oily liquid with a musty fishy odor. Melting point -6°C; boiling point 184°C; flash point 158°F. Denser than water (8.5 lb / gal) and slightly soluble in water. Vapors heavier than air. Toxic by skin absorption and inhalation. Produces toxic oxides of nitrogen during combustion. Used to manufacture other chemicals, especially dyes, photographic chemicals, agricultural chemicals and others.

공기와 물의 반응

Darkens on exposure to air and light. Polymerizes slowly to a resinous mass on exposure to air and light. Slightly soluble in water.

반응 프로필

Aniline is a heat sensitive base. Combines with acids to form salts. Dissolves alkali metals or alkaline earth metals with evolution of hydrogen. Incompatible with albumin, solutions of iron, zinc and aluminum, and acids. Couples readily with phenols and aromatic amines. Easily acylated and alkylated. Corrosive to copper and copper alloys. Can react vigorously with oxidizing materials (including perchloric acid, fuming nitric acid, sodium peroxide and ozone). Reacts violently with BCl3. Mixtures with toluene diisocyanate may ignite. Undergoes explosive reactions with benzenediazonium-2-carboxylate, dibenzoyl peroxide, fluorine nitrate, nitrosyl perchlorate, peroxodisulfuric acid and tetranitromethane. Violent reactions may occur with peroxyformic acid, diisopropyl peroxydicarbonate, fluorine, trichloronitromethane (293° F), acetic anhydride, chlorosulfonic acid, hexachloromelamine, (HNO3 + N2O4 + H2SO4), (nitrobenzene + glycerin), oleum, (HCHO + HClO4), perchromates, K2O2, beta-propiolactone, AgClO4, Na2O2, H2SO4, trichloromelamine, acids, FO3Cl, diisopropyl peroxy-dicarbonate, n-haloimides and trichloronitromethane. Ignites on contact with sodium peroxide + water. Forms heat or shock sensitive explosive mixtures with anilinium chloride (detonates at 464° F/7.6 bar), nitromethane, hydrogen peroxide, 1-chloro-2,3-epoxypropane and peroxomonosulfuric acid. Reacts with perchloryl fluoride form explosive products. .

위험도

An allergen. Toxic if absorbed through the skin. Combustible. Skin irritant. Questionable car- cinogen.

건강위험

The most prominent symptoms of acute aniline intoxication in man was cyanosis, lacrimation, tremors, tachypnea, and lethargy due to methemoglobin, low levels of sulfhemoglobin and Heinz body formation (Jenkins et al 1972).

건강위험

hemolytic anemia. Acute poisoning arisesdue possibly to methemoglobin formation,which may result in cyanosis. Overexposuremay lead to death from respiratory paralysis.Inhalation of 250 ppm aniline in air for 4hours was lethal to rats. The concentrationof aniline in samples of rapeseed foodoil that caused Spanish toxic oil syndromewas determined to be within the range of110–1300 ppb (Hill et al. 1987). Contact ofthe pure liquid on the skin can producemoderate irritation, while the effect on theeyes can be severe. The oral LD50 value inanimals varied with the species. An LD50value in mice is 464 mg/kg. Ingestion of1 or 2 g aniline may possibly cause deathto humans. Toxicity of aniline in aqueousspecies was very high. An LC50 value basedon static acute toxicity was calculated tobe 0.17 mg/L to daphnids (Daphnia magna)(Gersich and Mayes 1986).Khan et al. (2003) have studied the selec tive toxicity of aniline to the spleen in rats.The oxidative damage to spleen from ani line is attributed to a mechanism involvingformation of peroxynitrite and nitrotyrosinefrom the reaction of nitric oxide.Aniline is metabolized to aminophenols,phenylhydroxylamine, and their glucuronideand sulfate derivatives, and excreted. p Aminophenol is the major metabolite inhumans and is excreted in urine.Methylene blue (tetramethylthionine chlo ride) is an antidote to aniline poisoning. Thestandard dose is 1–2 mg/kg body weight or0.1 to 0.2 mL/kg of a 1% solution to be givenintravenously over 5–10 minutes (ATSDR).This antidote is recommended when there aresigns and symptoms of hypoxia (other thancyanosis) or when the methemoglobin lev els exceeds 30%. The 24- hour dose mustnot exceed 7 mg/kg. In case of ingestion aslurry of activated charcoal may be admin istered (1 g/kg body weight). Do not induceemesis.Aniline administered to rats by the oralroute caused tumors in the kidney andbladder. The evidence of carcinogenicity inanimals, however, is inadequate. Any cancer causing action of aniline in humans is notknown.

건강위험

Aniline is a moderate skin irritant, a moderate to severe eye irritant, and a skin sensitizer in animals. Aniline is moderately toxic via inhalation and ingestion. Symptoms of exposure (which may be delayed up to 4 hours) include headache, weakness, dizziness, nausea, difficulty breathing, and unconsciousness. Exposure to aniline results in the formation of methemoglobin and can thus interfere with the ability of the blood to transport oxygen. Effects from exposure at levels near the lethal dose include hypoactivity, tremors, convulsions, liver and kidney effects, and cyanosis. Aniline has not been found to be a carcinogen or reproductive toxin in humans. Some tests in rats demonstrate carcinogenic activity. However, other tests in which mice, guinea pigs, and rabbits were treated by various routes of administration gave negative results. Aniline produced developmental toxicity only at maternally toxic dose levels but did not have a selective toxicity for the fetus. It produces genetic damage in animals and in mammalian cell cultures but not in bacterial cell cultures.

건강위험

Aniline is classified as very toxic. Probable oral lethal dose in humans is 50-500 mg/kg for a 150 lb. person. Aniline poisoning is characterized by methemoglobin formation in the blood and resulting cyanosis or blue skin. The formation of methemoglobin interferes with the oxygen-carrying capacity of the blood. The approximate minimum lethal dose for a 150 lb. human is 10 grams. Serious poisoning may result from ingestion of 0.25 mL. People at special risk include individuals with glucose-6-phosphate-dehydrogenase deficiency and those with liver and kidney disorders, blood diseases, or a history of alcoholism.

건강위험

Exposures to aniline on inhalation, ingestion and/or through skin contact cause adverse health effects. Exposures to liquid aniline cause mild irritation to the skin and eyes. Aniline is a blood toxin and its absorption through the skin and by inhalation of its vapor results in systemic toxicity, damage to the kidney, liver, bone marrow and of methemoglobinemia. The symptoms of poisoning include, but are not limited to, drowsiness, dizziness, severe headache, nausea, tiredness, bluish discoloration of the lips and tongue, loss of appetite, irregular heart beat, mental confusion, and shock. A prolonged period of exposure to the vapor results in respiratory paralysis, convulsions, coma, and death.

화재위험

Aniline is a combustible liquid (NFPA rating = 2). Smoke from a fire involving aniline may contain toxic nitrogen oxides and aniline vapor. Toxic aniline vapors are given off at high temperatures and form explosive mixtures in air. Carbon dioxide or dry chemical extinguishers should be used to fight aniline fires.

화재위험

Combustion can produce toxic fumes including nitrogen oxides and carbon monoxide. Aniline vapor forms explosive mixtures with air. Aniline is incompatible with strong oxidizers and strong acids and a number of other materials. Avoid heating. Hazardous polymerization may occur. Polymerizes to a resinous mass.

인화성 및 폭발성

Aniline is a combustible liquid (NFPA rating = 2). Smoke from a fire involving aniline may contain toxic nitrogen oxides and aniline vapor. Toxic aniline vapors are given off at high temperatures and form explosive mixtures in air. Carbon dioxide or dry chemical extinguishers should be used to fight aniline fires.

화학 반응

Reactivity with Water No reaction; Reactivity with Common Materials: No reaction; Stability During Transport: Stable; Neutralizing Agents for Acids and Caustics: Flush with water and rinse with dilute acetic acid; Polymerization: Not pertinent; Inhibitor of Polymerization: Not pertinent.

공업 용도

Aniline, the simplest primary aromatic amine, consists of a nitrogen atom with two attached hydrogen atoms affixed to a benzene ring. This aromatic amine is a weaker base than the aliphatic amines but aniline does undergo many of the same reactions in the realm of synthetic chemistry. Aniline is used to prepare agricultural chemicals, antioxidants, fungicides, herbicides, isocyanates, and other commercially important chemicals.
Aniline is used as a chemical intermediate to prepare isocyanates for making polyurethanes, antioxidants, and vulcanization accelerators, as well as in the manufacture of agricultural fungicides, herbicides and insecticides and in the preparation of certain dyes.

공업 용도

In 1979 approximately 50% of the U.S. production of aniline was used in the preparation of 4,4'-methylene diphenyldiisocyanate (MDI) and polymethylene polyphenylisocyanate (polymeric MDI); 27% for production of rubber chemicals; 5% for hydroquinone production; 3% for production of drugs;and 9% for miscellaneous applications, including synthesis of herbicides and fibers (IARC 1982, Northcott 1978). Aniline is used in the manufacture of resins, perfumes and shoe blacks (Windholz et al 1983). It is also used as a chemical intermediate for the production of rubber processing chemicals such as accelerators; for dyes and pigments such as basic Orange 2 and manganese sulfate-coproduct; for pesticides such as alachlor; and for pharmaceuticals such as sulfonamide (HSDB 1989).

Safety Profile

Suspected carcinogen with experimental neoplastigenic data. A human poison by an unspecified route. Poison experimentally by most routes incluhng inhalation and ingestion. Experimental reproductive effects. A skin and severe eye irritant, and a rmld sensitizer. In the body, aniline causes formation of methemoglobin, resulting in prolonged anoxemia and depression of the central nervous system; less acute exposure causes hemolysis of the red blood cells, followed by stimulation of the bone marrow. The liver may be affected with resulting jaundice. Long-term exposure to a d n e dye manufacture has been associated with malignant bladder growths. A common air contaminant, A combustible liquid when exposed to heat or flame. To fight fire, use alcohol foam, CO2, dry chemical. It can react vigorously with oxidizing materials. When heated to decomposition it emits highly toxic fumes of NOx. Spontaneously explosive reactions occur with benzenediazonium-2-carboxylate, dibenzoyl peroxide, fluorine nitrate, nitrosyl perchlorate, red fuming nitric acid, peroxodisulfuric acid, and tetranitromethane. Violent reactions with boron trichloride, peroxyformic acid, dhsopropyl peroxydicarbonate, fluorine, trichloronitromethane (145℃), acetic anhydride, chlorosulfonic acid, hexachloromelamine, (HNO3 + N2O4 + H2SO4), (nitrobenzene + glycerin), oleum, (HCHO + HClO4), perchromates, K2O2, ppropiolactone, AgClO4, Na2On, H2SO4, trichloromelamine, acids, peroxydisulfuric acid, F03Cl, diisopropyl peroxy-dicarbonate, n-haloimides, and trichloronitromethane. Ignites on contact with sodium peroxide + water. Forms heator shock-sensitive explosive mixtures with anhnium chloride (detonates at 240°C/7.6 bar), nitromethane, hydrogen peroxide, 1 -chloro-2,3- epoxypropane, and peroxomonosulfuric acid. Reactions with perchloryl fluoride, perchloric acid, and ozone form explosive products.

잠재적 노출

Aniline is widely used as an intermediate in the synthesis of dyestuffs. It is also used in the manufacture of rubber accelerators and antioxidants, pharmaceuticals, marking inks; tetryl, optical whitening agents; photographic developers; resins, varnishes, perfumes, shoe polishes, and many organic chemicals.

Source

Detected in distilled water-soluble fractions of regular gasoline (87 octane) and Gasohol at concentrations of 0.55 and 0.20 mg/L, respectively (Potter, 1996). Aniline was also detected in 82% of 65 gasoline (regular and premium) samples (62 from Switzerland, 3 from Boston, MA). At 25 °C, concentrations ranged from 70 to 16,000 μg/L in gasoline and 20 to 3,800 μg/L in watersoluble fractions. Average concentrations were 5.8 mg/L in gasoline and 1.4 mg/L in watersoluble fractions (Schmidt et al., 2002).
Based on laboratory analysis of 7 coal tar samples, aniline concentrations ranged from ND to 13 ppm (EPRI, 1990).
Aniline in the environment may originate from the anaerobic biodegradation of nitrobenzene (Razo-Flores et al., 1999).

환경귀착

Biological. Under anaerobic conditions using a sewage inoculum, 10% of the aniline present degraded to acetanilide and 2-methylquinoline (Hallas and Alexander, 1983). In a 56-d experiment, [14C]aniline applied to soil-water suspensions under aerobic and anaerobic conditions gave 14CO2 yields of 26.5 and 11.9%, respectively (Scheunert et al., 1987). A bacterial culture isolated from the Oconee River in North Georgia degraded aniline to the intermediate catechol (Paris and Wolfe, 1987). Aniline was mineralized by a soil inoculum in 4 d (Alexander and Lustigman, 1966).
Soil. A reversible equilibrium is quickly established when aniline covalently bonds with humates in soils forming imine linkages. These quinoidal structures may oxidize to give nitrogensubstituted quinoid rings. The average second-order rate constant for this reaction in a pH 7 buffer at 30 °C is 9.47 x 10-5 L/g?h (Parris, 1980). In sterile soil, aniline partially degraded to azobenzene, phenazine, formanilide, and acetanilide and the tentatively identified compounds nitrobenzene and p-benzoquinone (Pillai et al., 1982).
Surface Water. Aniline degraded in pond water containing sewage sludge to catechol, which then degrades to carbon dioxide. Intermediate compounds identified in minor degradative pathways include acetanilide, phenylhydroxylamine, cis,cis-muconic acid, β-ketoadipic acid, levulinic acid, and succinic acid (Lyons et al., 1984).
Photolytic. A carbon dioxide yield of 46.5% was achieved when aniline adsorbed on silica gel was irradiated with light (λ >290 nm) for 17 h (Freitag et al., 1985). Products identified from the gas-phase reaction of ozone with aniline in synthetic air at 23 °C were nitrobenzene, formic acid, hydrogen peroxide, and a nitrated salt having the formula: [C6H5NH3]+NO3 - (Atnagel and Himmelreich, 1976). A second-order rate constant of 6.0 x 10-11 cm3/molecule?sec at 26 °C was reported for the vapor-phase reaction of aniline and OH radicals in air at room temperature (Atkinson, 1985).
Chemical/Physical. Alkali or alkaline earth metals dissolve in aniline with hydrogen evolution and the formation of anilides (Windholz et al., 1983). Laha and Luthy (1990) investigated the redox reaction between aniline and a synthetic manganese dioxide in aqueous suspensions at the pH range 3.7–6.5. They postulated that aniline undergoes oxidation by loss of one electron forming cation radicals. These radicals may undergo head-to-tail, tail-to-tail, and head-to-head couplings forming 4-aminophenylamine, benzidine, and hydrazobenzene, respectively. These compounds were additionally oxidized, in particular, hydrazobenzene to azobenzene at pH 4 (Laha and Luthy, 1990).

신진 대사

Aniline is absorbed from the skin and the gastrointestinal tract (BaranowskaDutkeiwicz 1982). It is excreted primarily in the urine of treated rabbits with only a small fraction (2%) of the administered dose excreted in the feces (Kao et al 1978; Parke 1960) and none in the expired air. Urinary metabolites of aniline include P-aminophenol, O-aminophenol, m-aminophenol, aniline-N-glucuronide, phenylsulfonic acid and acetanilide (Parke, 1960). Aminophenyl- and acetylaminophenyl-mercapturic acids also have been detected in the urine of rats and rabbits (IARC 1982). Excretion of aniline conjugates of P-aminophenol have been observed in human urine (Williams 1959) and urinary excretion of these conjugates has been found to reflect the extent of absorption of aniline vapor through the skin and respiratory tract (Kao et al 1978; Piotrowski 1972). The methemoglobinemia produced in humans by aniline is believed to result from its N-hydroxylation (IARC 1982). Aniline also is a weak inducer of hepatic microsomal enzymes. Subcutaneous injections of 5 mg/kg body weight for 30 days to rats impaired aniline metabolism in vivo but it increased its in vitro metabolism to p-aminophenol (Wisniewska-Knypl and Jablonska 1975; Wisniewska-Knypl et al 1975). Low protein diets decreased hepatic aniline hydroxylation in the rat (Kato et al 1968). Saturated fat increased aniline metabolism by rat liver independent of chemical composition of the fat used (Caster et al 1970). Highest initial concentrations of aniline derived radioactivity were found in blood, liver, kidney, bladder, and gastrointestinal tract of rat, given labelled compound i.v. After 0.5 h and 6 h, radioactivity concentrated in the stomach and jejunum and subsequently absorbed from the intestine indicating the presence of an enterogastric cycle in rats. Aniline was the predominant compound in the gastric contents of treated animals and acetanilide is the major metabolite found in the jejunal contents (Irons et al 1980).

저장

Aniline should be kept stored against physical damage in a cool (but not freezing), dry, well-ventilated location, away from smoking areas and fi re hazard. It should be kept separated from incompatibles and the containers should be bonded and grounded for transfer to avoid static sparks

운송 방법

UN1547 Aniline, Hazard Class: 6.1; Labels: 6.1- Poisonous materials. UN1548 Aniline hydrochloride, Hazard Class: 6.1; Labels: 6.1-Poisonous materials.

Purification Methods

Aniline is hygroscopic. It can be dried with KOH or CaH2, and distilled under reduced pressure. Treatment with stannous chloride removes sulfur-containing impurities, reducing the tendency to become coloured by aerial oxidation. It can be crystallised from Et2O at low temperatures. More extensive purifications involve preparation of derivatives, such as the double salt of aniline hydrochloride and cuprous chloride or zinc chloride, or N-acetylaniline (m 114o) which can be recrystallised from water. Redistilled aniline is dropped slowly into a strong aqueous solution ofrecrystallised oxalic acid. Aniline oxalate (m 174-175o) is filtered off, washed several times with water and recrystallised three times from 95% EtOH. Treatment with saturated Na2CO3 solution regenerated aniline which was distilled from the solution, dried and redistilled under reduced pressure [Knowles Ind Eng Chem 12 881 1920]. After refluxing with 10% acetone for 10hours, aniline is acidified with HCl (Congo Red as indicator) and extracted with Et2O until colourless. The hydrochloride is purified by repeated crystallisation before aniline is liberated by addition of alkali, then dried with solid KOH, and distilled. The product is sulfur-free and remains colourless in air [Hantzsch & Freese Chem Ber 27 2529, 2966 1894]. Non-basic materials, including nitro compounds, are removed from aniline in 40% H2SO4 by passing steam through the solution for 1hour. Pellets of KOH are then added to liberate the aniline which is steam distilled, dried with KOH, distilled twice from zinc dust at 20mm, dried with freshly prepared BaO, and finally distilled from BaO in an all-glass apparatus [Few & Smith J Chem Soc 753 1949]. Aniline is absorbed through skin and is TOXIC.[Beilstein 12 IV 223.]

비 호환성

May form explosive mixture with air. Unless inhibited (usually methanol), aniline is readily able to polymerize. Fires and explosions may result from contact with halogens, strong acids; oxidizers, strong base organic anhydrides; acetic anhydride, isocyanates, aldehydes, sodium peroxide. Strong reaction with toluene diisocyanate. Reacts with alkali metals and alkali earth metals. Attacks some plastics, rubber and coatings; copper and copper alloys.

폐기물 처리

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Incineration with provision for nitrogen oxides removal from flue gases by scrubber, catalytic or thermal device.

주의 사항

When using aniline, occupational workers should wear impervious protective clothing, including boots, gloves, laboratory coat, apron or coveralls, chemical safety goggles, and/ or a full face shield as appropriate, to prevent skin contact. Workplace facilities should maintain an eye-wash fountain and quick-drench facilities. Workers should not eat, drink, or smoke in the workplace.

아닐린 준비 용품 및 원자재

원자재

준비 용품


아닐린 공급 업체

글로벌( 287)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 21752 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20672 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32447 55
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30002 58
Chemwill Asia Co.,Ltd.
86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 23976 58
Haihang Industry Co.,Ltd
86-531-88032799
+86 531 8582 1093 export@haihangchem.com CHINA 8921 58
QUALITY CONTROL CHEMICALS INC.
(323) 306-3136
(626) 453-0409 orders@qcchemical.com United States 8407 58
Hubei xin bonus chemical co. LTD
86-13657291602
027-59338440 sales@guangaobio.com CHINA 23049 58
Standardpharm Co. Ltd.
0714-3992388
yxzy@std-med.net CHINA 13064 58
Chongqing Chemdad Co., Ltd
+86-13650506873
sales@chemdad.com CHINA 35440 58

아닐린 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved