ChemicalBook
Chinese English Japanese Germany Korea

1,2-디클로로에탄

1,2-디클로로에탄
1,2-디클로로에탄 구조식 이미지
카스 번호:
107-06-2
한글명:
1,2-디클로로에탄
동의어(한글):
염화에틸렌;1,2-디클로로에탄(1,2-DICHLOROETHANE)1,2-비클로로에탄(1,2-BICHLOROETHANE)알파,베타-디클로로에탄(ALPHA,BETA-DICHLOROETHANE)SYM-디클로로에탄(SYM-DICHLOROETHANE)이염화글리콜;이염화에틸렌;이염화에탄;이염화에테인;1,2-이염화에탄;1,2-다이클로로에탄;다이클로로에탄(에틸렌다이클로라이드)
상품명:
1,2-Dichloroethane
동의어(영문):
DCE;EDC;R150;R-150;HCC150;1,2-DCE;Brocide;borersol;dutchoil;ent1,656
CBNumber:
CB7295478
분자식:
C2H4Cl2
포뮬러 무게:
98.96
MOL 파일:
107-06-2.mol

1,2-디클로로에탄 속성

녹는점
-35 °C
끓는 점
83 °C(lit.)
밀도
1.256 g/mL at 25 °C(lit.)
증기 밀도
3.4 (20 °C, vs air)
증기압
87 mm Hg ( 25 °C)
굴절률
n20/D 1.444(lit.)
인화점
60 °F
저장 조건
0-6°C
용해도
7.9g/l
물리적 상태
Liquid
색상
APHA: ≤10
상대극성
0.327
폭발한계
6.2-15.9%(V)
수용성
8.7 g/L (20 ºC)
Merck
14,3797
BRN
605264
Henry's Law Constant
11.24 at 30 °C (headspace-GC, Sanz et al., 1997)
노출 한도
TLV-TWA 10 ppm (~40 mg/m3) (ACGIH), 1 ppm (NIOSH), 50 ppm (MSHA and OSHA); ceiling 2 ppm/15 min (NIOSH); carcinogenicity: Animal Sufficient Evidence, Human Limited Evidence (IARC).
CAS 데이터베이스
107-06-2(CAS DataBase Reference)
NIST
Ethane, 1,2-dichloro-(107-06-2)
EPA
Ethane, 1,2-dichloro-(107-06-2)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F,T
위험 카페고리 넘버 45-11-22-36/37/38-23/25-23
안전지침서 53-45-24-16-7
유엔번호(UN No.) UN 1184 3/PG 2
WGK 독일 3
RTECS 번호 KI0525000
F 고인화성물질 3-10
자연 발화 온도 775 °F
TSCA Yes
HS 번호 2903 15 00
위험 등급 3
포장분류 II
유해 물질 데이터 107-06-2(Hazardous Substances Data)
독성 LD50 orally in rats: 770 mg/kg (Smyth)
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H315 피부에 자극을 일으킴 피부부식성 또는 자극성물질 구분 2 경고 P264, P280, P302+P352, P321,P332+P313, P362
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H331 흡입하면 유독함 급성 독성 물질 흡입 구분 3 위험 P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H335 호흡 자극성을 일으킬 수 있음 특정 표적장기 독성 - 1회 노출;호흡기계 자극 구분 3 경고
H350 암을 일으킬 수 있음 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 1A, 1B 위험
H370 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 1회 노출 구분 1 위험 P260, P264, P270, P307+P311, P321,P405, P501
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P311 의료기관(의사)의 진찰을 받으시오.
P301+P310 삼켰다면 즉시 의료기관(의사)의 진찰을 받으시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P308+P313 노출 또는 접촉이 우려되면 의학적인 조치· 조언를 구하시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
P403+P235 환기가 잘 되는 곳에 보관하고 저온으로 유지하시오.

1,2-디클로로에탄 C화학적 특성, 용도, 생산

물성

물에 약간 녹으며 에탄올·에테르에 잘 녹는다.

용도

1,2-다이클로로에테인(1,2-dichloroethane)은 화학물질의 하나로 염화에틸렌라고도 하며, 이염화 에틸렌(ethylene dichloride, EDC)이라는 이름으로도 알려져있다. 이 물질은 주로 PVC 생산을 위한 주요 물질인 폴리염화 단량체(vinyl chloride monomer, VCM, chloroethene)를 제조하는 데 주로 사용된다. 또한 유기화합물을 합성하는 데 중간체나 용매로도 많이 사용된다.

생산/준비/합성

염화철(III)을 촉매로 하고 액체상 또는 기체상으로 에틸렌과 염소를 반응 시켜 공업적으로 제조한다.

화학적 성질

Ethylene dichloride is one of the highest volume chemicals used in the United States. It is a colorless oily liquid with a chloroform-like odor, detectable over the range of 6–40 ppm,with a sweet taste. Ethylene dichloride (1,2-dichloroethane), which has a carbon-carbon single bond, should be distinguished from 1,2-dichloroethene, which has a carbon-carbon double bond. It is a skin irritant. Ethylene dichloride is also used as an extraction solvent, as a solvent for textile cleaning and metal degreasing, in certain adhesives, and as a component in fumigants for upholstery, carpets, and grain. Other miscellaneous applications include paint, varnish, and fi nish removers, soaps and scouring compounds, wetting and penetrating agents, organic synthesis, ore fl otation, and as a dispersant for nylon, rayon, styrene-butadiene rubber, and other plastics.

화학적 성질

1,2-Dichloroethane is a colorless, flammable liquid which has a pleasant, chloroform-like odor, and a sweetish taste. Decomposes slowly: turns dark and acidic on contact with air, moisture, and light. The Odor Threshold is 100 ppm.

물리적 성질

Clear, colorless, oily liquid with a pleasant, chloroform-like odor. The average least detectable odor threshold concentrations in water at 60 °C and in air at 40 °C were 12 and 52 mg/L, respectively (Alexander et al., 1982). Experimentally determined detection and recognition odor threshold concentrations were 25 mg/m3 (6 ppmv) and 165 mg/m3 (41 ppmv), respectively (Hellman and Small, 1974).

용도

Ethylene dichloride (1,2-dichloroethane), otherwise known as EDC, is produced by reacting chlorine or anhydrous hydrochloric acid with ethylene. The largest single use for EDC is the production of vinyl chloride monomer, which is used to produce poly vinyl chloride (PVC). EDC can also be used in the manufacture of other organic compounds, and as a solvent. Ethylene dichloride is a colorless, oily liquid with a chloroform-like smell. It has many uses in industry, with principal ones being the following:
As an intermediate in the manufacture of methyl chloroform, perchloroethylene, ethylene amines, polyvinyl chloride (PVC), sulfide compounds, vinyl chloride, and trichloroethane.
As an additive in gasoline (used as a lead scavenger), pharmaceutical products, color film, and pesticides.
As a solvent for rubber, tobacco extract, paint, printing inks, and varnish.
Miscellaneous uses include as an ingredient in fingernail polish, for metal degreasing, in extracting spices, and as a dry cleaning agent.
Two of the major uses for this chemical are the manufacture of PVC and as a lead scavenger in gasoline. The process for making EDC begins with crude oil or natural gas and sodium chloride. The hydrocarbon raw materials are converted to ethene (ethylene), and sodium chloride is electrolyzed to pruduce chlorine.
2 NaCl + 2 H2O = Cl2 + 2 NaOH + H2
This electrochemical process is also the major industrial route for sodium hydroxide production, so essentially the only side product from this initial reaction is hydrogen gas, which is later converted to water. Once the ethylene is produced from the crude hydrocarbons, it is reacted with chlorine gas:
C2H4 + Cl2 - C2H4Cl (1,2-dichloroethane)
Although its common name would lead one to believe otherwise, EDC does not contain a double bond. In one of its major industrial processes, the manufacture of PVC, the following reaction is carried out:
C2H4Cl = C2H3Cl (vinyl chloride) + HC1
The HC1 produced in this reaction is recycled to be used in the first reaction by oxidation of the hydrogen-chlorine bond.
EDC is a carcinogen and a mutagen. Assessments of 1,2-dichloroethane are in progress under the authority of the Clean Air Act, Safe Drinking Water Act (SDWA), Toxic Substances Control Act (TSCA), and the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA). EDC is also listed under CERCLA as a hazardous material, and is required to be reported as such under Title III of SARA, otherwise known as the Community Right-to-Know Act.

용도

1,2-Dichloroethane is used in the manufacture of acetyl cellulose and vinyl chloride; inpaint removers; as a fumigant; as a degreaser;as a wetting agent; and as a solvent for oils,waxes, gums, resins, and rubber.

용도

manufacture of vinyl chloride, acetyl cellulose; solvent for fats, oils, waxes, gums, resins, and particularly for rubber. Has been used as insect and soil fumigant.

정의

ChEBI: A member of the class of chloroethanes substituted by two chloro groups at positions 1 and 2.

일반 설명

A clear colorless liquid with a chloroform-like odor. Flash point 56°F. Denser than water and insoluble in water. Vapors are heavier than air. Density 10.4 lb / gal.
Ethylene dichloride was also used as an extraction solvent, as a solvent for textile cleaning and metal degreasing, in certain adhesives, and as a component in fumigants for upholstery, carpets, and grain. Other miscellaneous applications include paint, varnish, and finish removers, soaps and scouring compounds, wetting and penetrating agents, organic synthesis, ore flotation, and as a dispersant for nylon, rayon, styrene-butadiene rubber, and other plastics. Reports indicate that ethylene dichloride has extensive industrial and other applications around the globe.

공기와 물의 반응

Highly flammable. Slightly water soluble.

반응 프로필

Liquid ammonia and 1,2-Dichloroethane can cause an explosion when mixed, NFPA 491M, 1991. A tank of dimethyl amino propyl amine exploded violently when 1,2-Dichloroethane reacted with wet 1,2-Dichloroethane which had been the tank's previous contents [Doyle 1973]. Halogenated aliphatic compounds, such as 1,2-Dichloroethane , are moderately or very reactive. Reactivity generally decreases with increased degree of substitution of halogen for hydrogen atoms. Materials in this group are incompatible with strong oxidizing and reducing agents. Also, they are incompatible with many amines, nitrides, azo/diazo compounds, alkali metals, epoxides, aluminum

위험도

Toxic by ingestion, inhalation, and skin absorption; strong irritant to eyes and skin; a carcinogen. Flammable, dangerous fire risk, explosive limits in air 6–16%. Possible carcinogen.

건강위험

The toxic symptoms from exposure to 1,2-dichloroethane include depression of the cen tral nervous system, irritation of the eyes,corneal opacity, nausea, vomiting, diarrhea,ulceration, somnolence, cyanosis, pulmonaryedema, and coma. Repeated exposure mayproduce injury to the kidney and liver. Inges tion of the liquid can cause death. A fataldose in humans may range between 30 and50 mL. The liquid is an irritant to the skinand damaging to the eyes.
LC50 value, inhalation (rats): 1000 ppm/7 hLD50 value, oral (rabbits): 860 mg/kg
1,2-Dichloroethane tested positive to thehistidine reversion–Ames test and othermutagenic tests. The compound is carcino genic to animals. Inhalation or oral adminis tration caused lung, gastrointestinal, and skincancers in mice and rats.

화재위험

Flammable liquid; burns with a smoky flame; flash point (closed cup) 13°C (56°F), (open cup) 18°C (65°F); vapor pressure 62 torr at 20°C (68°F); the vapor is heavier than air and can travel a considerable distance to a source of ignition and flash back; autoignition tem perature 413°C (775°F); fire-extinguishing agent: dry chemical, CO2, or foam; water may be used to keep fire-exposed contain ers cool and to disperse the vapors and flush away any spill.
1,2-Dichloroethane forms explosive mix tures with air, with LEL and UEL val ues of 6.2% and 16.0% by volume in air, respectively. Its reactions with alkali met als, powdered aluminum, or magnesium can be violent. It forms explosive mixtures with nitrogen tetroxide.

농업용

Fumigant, Insecticide: Not approved for use in EU countries. Not registered for use in the U.S. When mixed with carbon tetrachloride, ethylene dichloride is used as a grain fumigant for bulk storage in bags, sealed containers, bins or on floors. In recent years, 1,2-dichloroethane has found wide use in the manufacture of ethylene glycol, diaminoethylene, polyvinyl chloride, nylon, viscose rayon, styrenebutadiene rubber, and various plastics. It is a solvent for resins, asphalt, bitumen, rubber, cellulose acetate, cellulose ester, and paint; a degreaser in the engineering, textile and petroleum industries; and an extracting agent for soybean oil and caffeine. It is also used as an antiknock agent in gasoline, a pickling agent and a dry-cleaning agent. It has found use in photography, xerography, water softening, and also in the production of adhesives, cosmetics, pharmaceuticals, and varnishes.

상품명

BORER SOL®; BROCIDE®; DESTRUXOL BORER-SOL®; DOWFUME®[C]; DUTCH LIQUID®; DUTCH OIL®

Safety Profile

Confirmed carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data. An experimental transplacental carcinogen. A human poison by ingestion. Poison experimentally by intravenous and subcutaneous routes. Moderately toxic by inhalation, skin contact, and intraperitoneal routes. Human systemic effects by ingestion and inhalation: flaccid paralysis without anesthesia (usually neuromuscular blockage), somnolence, cough, jaundce, nausea or vomiting, hypermoulity, diarrhea, ulceration or bleeding from the stomach, fatty liver degeneration, change in cardiac rate, cyanosis, and coma. It may also cause dermatitis, edema of the lungs, toxic effects on the kidneys, and severe corneal effects. A strong narcotic. Experimental teratogenic and reproductive effects. A skin and severe eye irritant, and strong local irritant. Its smell and irritant effects warn of its presence at relatively safe concentrations. Human mutation data reported. if exposed to heat, flame, or oxidizers. Moderately explosive in the form of vapor when exposed to flame. Violent reaction with Al, N2O4, NH3, dimethylaminopropylamine. Can react vigorously with oxidzing materials and emit vinyl chloride and HCl. To fight fire, use water, foam, Co2, dry chemicals. When heated to decomposition it emits highly toxic fumes of Cland phosgene. See also CHLORINATED HYDROCARBONS, ALIPHATIC . Flammable liquid. A dangerous fire hazard

잠재적 노출

In recent years, 1,2-dichloroethane is used in the production of vinyl chloride and as a leadscavenging agent in petrol; it has found wide use in the manufacture of ethylene glycol, diaminoethylene, polyvinyl chloride; nylon, viscose rayon; styrenebutadiene rubber, and various plastics. It is a solvent for resins, asphalt, bitumen, rubber, cellulose acetate; cellulose ester; and paint; a degreaser in the engineering, textile, and petroleum industries; and an extracting agent for soybean oil and caffeine. It is also used as an antiknock agent in gasoline; a pickling agent; a fumigant; and a dry-cleaning agent. It has found use in photography, xerography, and water softening; and also in the production of adhesives, cosmetics, pharmaceuticals, and varnishes.

Carcinogenicity

1,2-Dichloroethane is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.

Source

Improper use of insecticidal fumigant formulation containing 1,2-dichloropropane and carbon tetrachloride (Granosan).

환경귀착

Biological. Methanococcus thermolithotrophicus, Methanococcus deltae, and Methanobacterium thermoautotrophicum metabolized 1,2-dichloroethane releasing methane and ethylene (Belay and Daniels, 1987). 1,2-Dichloroethane showed slow to moderate biodegradative activity with concomitant rate of volatilization in a static-culture flask-screening test (settled domestic wastewater inoculum) conducted at 25 °C. At concentrations of 5 and 10 mg/L, percent losses after 4 wk of incubation were 63 and 53, respectively. At a substrate concentration of 5 mg/L, 27% was lost due to volatilization after 10 d (Tabak et al., 1981).
Photolytic. Titanium dioxide suspended in an aqueous solution and irradiated with UV light (λ = 365 nm) converted 1,2-dichloroethane to carbon dioxide at a significant rate (Matthews, 1986).
The rate constant for the reaction of 1,2-dichloroethane and OH radicals in the atmosphere at 300 K is 1.3 x 10-11 cm3/molecule?sec (Hendry and Kenley, 1979). At 296 K, a photooxidation rate constant of 2.2 x 10-13 cm3/molecule?sec was reported for the reaction with OH radicals resulting in a half-life of 1.7 months (Howard and Evenson, 1976).
Chemical/Physical. Anticipated products from the reaction of 1,2-dichloroethane with ozone or OH radicals in the atmosphere are chloroacetaldehyde, chloroacetyl chloride, formaldehyde, and ClHCHO (Cupitt, 1980).

신진 대사 경로

Resting cell suspensions of the soil methylotroph Methylosinus trichosporium OB-3b rapidly dehalogenate 1,2-dichloroethane, resulting in the formation of chloroethanol via direct hydroxylation of one of the C-Cl bonds, and this ethanol is rapidly oxidized to yield chloroacetic acid.

저장

Ethylene dichloride should be kept protected against physical damage. Store in a cool, dry, well-ventilated location, away from any area where the fi re hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfer to avoid static sparks.

운송 방법

UN1184 Ethylene dichloride, Hazard Class: 3; Labels: 3-Flammable liquid, 6.1-Poisonous materials. Note: United States DOT 49CFR172.101, Inhalation Hazardous Chemical as 1,2-Dichloroethane

Purification Methods

It is usually prepared by chlorinating ethylene, so that likely impurities include higher chloro derivatives and other chloro compounds depending on the impurities originally present in the ethylene. It forms azeotropes with water, MeOH, EtOH, trichloroethylene, CCl4 and isopropanol. Its azeotrope with water (containing 8.9% water, and b 77o) can be used to remove gross amounts of water prior to final drying. As a preliminary purification step, it can be steam distilled, and the lower layer is treated as below. Shake it with conc H2SO4 (to remove alcohol added as an oxidation inhibitor), wash with water, then dilute KOH or aqueous Na2CO3 and again with water. After an initial drying with CaCl2, MgSO4 or by distillation, it is refluxed with P2O5, CaSO4 or CaH2 and fractionally distilled. Carbonyl-containing impurities can be removed as described for chloroform. [Beilstein 1 IV 131.]

Degradation

Ethylene dichloride (1) had been detected in surface and ground water as an environmental contaminant, resulting from both industrial and agricultural uses. It is also detected following the chlorination of drinking water. Ethylene dichloride is stable to hydrolytic degradation at environmentally relevant pH and temperature.
The primary dissipation mechanism of ethylene dichloride is volatilisation (DT50 30 min, Moore et al., 1991). Ethylene dichloride interacts with hydroxyl radicals produced by photo-oxidation in air to yield chloracetyl chloride (2, Howard and Evenson, 1976; Radding et al., 1977). The DT50 of ethylene dichloride in the vapour phase under atmospheric photo-oxidation conditions was 12-122 days (Atkinson, 1985).

비 호환성

May form explosive mixture with air. Reacts violently with strong oxidizers and caustics; chemically active metals, such as magnesium or aluminum powder, sodium and potassium; alkali metals; alkali amides; liquid ammonia. Decomposes to vinyl chloride and HCl above 600℃. Attacks plastics, rubber, coatings. Attacks many metals in presence of water.

폐기물 처리

Incineration, preferably after mixing with another combustible fuel. Care must be exercised to assure complete combustion to prevent the formation of phosgene. An acid scrubber is necessary to remove the halo acids produced

주의 사항

Occupational workers should avoid use of ethylene dichloride along with oxidizing agents, strong alkalis, strong caustics, magnesium, sodium, potassium, active amines, ammonia List of Chemical Substances

법규

Coast Guard, Department of Homeland Security
Minimum requirements have been established for safe transport of 1,2-dichloroethane on ships and barges.
Department of Transportation (DOT)
1,2-Dichloroethane is considered a hazardous material, and special requirements have been set for marking, labeling, and transporting this material.
Environmental Protection Agency (EPA)
Clean Air Act
National Emissions Standards for Hazardous Air Pollutants: Listed as a hazardous air pollutant. New Source Performance Standards: Manufacture of 1,2-dichloroethane is subject to certain provisions for the control of volatile organic compound emissions. Urban Air Toxics Strategy: Identified as one of 33 hazardous air pollutants that present the greatest threat to public health in urban areas.
Clean Water Act
Effluent Guidelines: Listed as a toxic pollutant.
?Designated a hazardous substance.
?Water Quality Criteria: Based on fish or shellfish and water consumption = 0.38 μg/L; based on fish or shellfish consumption only = 37 μg/L.
Comprehensive Environmental Response, Compensation, and Liability Act Reportable quantity (RQ) = 100 lb.
Emergency Planning and Community Right-To-Know Act Toxics Release Inventory: Listed substance subject to reporting requirements.
Resource Conservation and Recovery Act
Characteristic Hazardous Waste: Toxic characteristic leaching procedure (TCLP) threshold = 0.5 mg/L. Listed Hazardous Waste: Waste codes for which the listing is based wholly or partly on the presence of 1,2-dichloroethane = U077, F024, F025, K018, K019, K020, K029, K030, K096. Listed as a hazardous constituent of waste.
Safe Drinking Water Act
Maximum contaminant level (MCL) = 0.005 mg/L.
Food and Drug Administration (FDA)

1,2-디클로로에탄 준비 용품 및 원자재

원자재

준비 용품


1,2-디클로로에탄 공급 업체

글로벌( 271)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Henan DaKen Chemical CO.,LTD.
+86-371-55531817
info@dakenchem.com CHINA 21726 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com CHINA 20672 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32447 55
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30002 58
Hubei Jusheng Technology Co.,Ltd.
86-18871470254
027-59599243 sales@jushengtech.com CHINA 28236 58
Xiamen AmoyChem Co., Ltd
+86 592-605 1114
sales@amoychem.com CHINA 6372 58
Kono Chem Co., Ltd
+86-132 8924 6953(Whatsapp/Wechat)
+86-29-86107037 info@konochemical.com CHINA 2997 58
Hubei xin bonus chemical co. LTD
86-13657291602
027-59338440 sales@guangaobio.com CHINA 23049 58
Shandong chuangyingchemical Co., Ltd.
13156170209
sale@chuangyingchem.com CHINA 4405 58
Chongqing Chemdad Co., Ltd
+86-13650506873
sales@chemdad.com CHINA 35440 58

1,2-디클로로에탄 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved