1,2-디클로로에탄

1,2-디클로로에탄
1,2-디클로로에탄 구조식 이미지
카스 번호:
107-06-2
한글명:
1,2-디클로로에탄
동의어(한글):
염화에틸렌;1,2-디클로로에탄(1,2-DICHLOROETHANE)1,2-비클로로에탄(1,2-BICHLOROETHANE)알파,베타-디클로로에탄(ALPHA,BETA-DICHLOROETHANE)SYM-디클로로에탄(SYM-DICHLOROETHANE)이염화글리콜;이염화에틸렌;이염화에탄;이염화에테인;1,2-이염화에탄;1,2-다이클로로에탄;다이클로로에탄(에틸렌다이클로라이드);에틸렌디클로라이드
상품명:
1,2-Dichloroethane
동의어(영문):
DCE;EDC;1,2-DCE;ETHYLENE DICHLORIDE;ETHYLENE CHLORIDE;CH2ClCH2Cl;1,2-Dichlorethane;1,2-Dichlorethan;Ethane,1,2-dichloro-;ethylene dichloride (eDC)
CBNumber:
CB7295478
분자식:
C2H4Cl2
포뮬러 무게:
98.96
MOL 파일:
107-06-2.mol
MSDS 파일:
SDS

1,2-디클로로에탄 속성

녹는점
-35 °C (lit.)
끓는 점
83 °C (lit.)
밀도
1.256 g/mL at 25 °C (lit.)
증기 밀도
3.4 (20 °C, vs air)
증기압
87 mm Hg ( 25 °C)
굴절률
n20/D 1.444(lit.)
인화점
60 °F
저장 조건
0-6°C
용해도
7.9g/L
물리적 상태
액체
색상
APHA: ≤10
상대극성
0.327
냄새
클로로포름 같은 냄새
폭발한계
6.2-15.9%(V)
수용성
8.7g/L(20℃)
Merck
14,3797
BRN
605264
Henry's Law Constant
11.24 at 30 °C (headspace-GC, Sanz et al., 1997)
노출 한도
TLV-TWA 10 ppm (~40 mg/m3) (ACGIH), 1 ppm (NIOSH), 50 ppm (MSHA and OSHA); ceiling 2 ppm/15 min (NIOSH); carcinogenicity: Animal Sufficient Evidence, Human Limited Evidence (IARC).
Dielectric constant
10.7(20℃)
안정성
휘발성 물질
LogP
1.45 at 20℃
CAS 데이터베이스
107-06-2(CAS DataBase Reference)
IARC
2B (Vol. 20, Sup 7, 71) 1999
NIST
Ethane, 1,2-dichloro-(107-06-2)
EPA
1,2-Dichloroethane (107-06-2)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F,T
위험 카페고리 넘버 45-11-22-36/37/38-23/25-23
안전지침서 53-45-24-16-7
유엔번호(UN No.) UN 1184 3/PG 2
WGK 독일 3
RTECS 번호 KI0525000
F 고인화성물질 3-10
자연 발화 온도 775 °F
TSCA Yes
HS 번호 2903 15 00
위험 등급 3
포장분류 II
유해 물질 데이터 107-06-2(Hazardous Substances Data)
독성 LD50 orally in rats: 770 mg/kg (Smyth)
IDLA 50 ppm
기존화학 물질 KE-10121
유해화학물질 필터링 2001-1-518
함량 및 규제정보 물질구분: 유독물질; 혼합물(제품)함량정보: 1,2-이염화에탄 및 이를 0.1% 이상 함유한 혼합물
그림문자(GHS): GHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H350 암을 일으킬 수 있음 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 1A, 1B 위험 GHS hazard pictograms
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P308+P313 노출 또는 접촉이 우려되면 의학적인 조치· 조언를 구하시오.
P405 밀봉하여 저장하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.
NFPA 704
3
2 0

1,2-디클로로에탄 C화학적 특성, 용도, 생산

물성

물에 약간 녹으며 에탄올·에테르에 잘 녹는다.

용도

1,2-다이클로로에테인(1,2-dichloroethane)은 화학물질의 하나로 염화에틸렌라고도 하며, 이염화 에틸렌(ethylene dichloride, EDC)이라는 이름으로도 알려져있다. 이 물질은 주로 PVC 생산을 위한 주요 물질인 폴리염화 단량체(vinyl chloride monomer, VCM, chloroethene)를 제조하는 데 주로 사용된다. 또한 유기화합물을 합성하는 데 중간체나 용매로도 많이 사용된다.

생산/준비/합성

염화철(III)을 촉매로 하고 액체상 또는 기체상으로 에틸렌과 염소를 반응 시켜 공업적으로 제조한다.

개요

1,2-Dichloroethane, also called ethylene dichloride (EDC), is a manufactured chemical that is not found naturally in the environment. It is used principally to synthesize vinyl chloride, which is further used to produce a variety of vinyl based plastics products, such as polyvinyl chloride (PVC) pipes, furniture, automobile upholstery, wall coverings, housewares, and automobile parts. It is used in solvents in closed systems for various extraction and cleaning purposes in organic synthesis. It is used as a leaded gasoline additive to remove lead, but with declining tendency. It is used as a dispersant in rubber and plastics, as a wetting and penetrating agent. It was used in ore flotation, as a metal degreaser, and in textile and PVC cleaning. It was also used as an insect fumigant for stored grains and in mushroom houses, a soil fumigant in peach and apple orchards. But due to its toxicity, it is no longer registered for use as an insect fumigant in the United States (IARC 1999).
1,2-Dichloroethane structure
1,2-Dichloroethane structure

화학적 성질

1,2-Dichloroethane is a clear and colorless, flammable liquid which has a pleasant, chloroform-like odor, and a sweetish taste. Decomposes slowly: turns dark and acidic on contact with air, moisture, and light. The Odor Threshold is 100 ppm.It is a volatile compound. It is relatively insoluble in water (8.6 × 103 mg/l at 25 °C) but soluble in various organic solvents and is miscible with alcohol, chloroform, and ether (NLM, 2013). 1,2-Dichloroethane is one of the highest volume chemicals used in the United States. It is also used as an extraction solvent, as a solvent for textile cleaning and metal degreasing, in certain adhesives, and as a component in fumigants for upholstery, carpets, and grain.

물리적 성질

Clear, colorless, oily liquid with a pleasant, chloroform-like odor. The average least detectable odor threshold concentrations in water at 60 °C and in air at 40 °C were 12 and 52 mg/L, respectively (Alexander et al., 1982). Experimentally determined detection and recognition odor threshold concentrations were 25 mg/m3 (6 ppmv) and 165 mg/m3 (41 ppmv), respectively (Hellman and Small, 1974).

용도

1,2-Dichloroethane is used in the manufacture of acetyl cellulose and vinyl chloride; inpaint removers; as a fumigant; as a degreaser;as a wetting agent; and as a solvent for oils,waxes, gums, resins, and rubber. It has been used as insect and soil fumigant.

주요 응용

1,2-dichloroethane (Ethylene dichloride), also known as EDC, is produced by reacting chlorine or anhydrous hydrochloric acid with ethylene. The largest single use for EDC is the production of vinyl chloride monomer, which is used to produce poly vinyl chloride (PVC). It has many uses in industry, with principal ones being the following:
As an intermediate in the manufacture of methyl chloroform, perchloroethylene, ethylene amines, polyvinyl chloride (PVC), sulfide compounds, vinyl chloride, and trichloroethane.
As an additive in gasoline (used as a lead scavenger), pharmaceutical products, color film, and pesticides.
As a solvent for rubber, tobacco extract, paint, printing inks, and varnish.
Miscellaneous uses include as an ingredient in fingernail polish, for metal degreasing, in extracting spices, and as a dry cleaning agent.

정의

ChEBI: 1,2-dichloroethane is a member of the class of chloroethanes substituted by two chloro groups at positions 1 and 2. It has a role as a non-polar solvent, a hepatotoxic agent and a mutagen.

제조 방법

The first synthesis of 1,2-dichloroethane was achieved in 1795. 1,2-Dichloroethane is industrially produced by chlorination of ethylene. This chlorination can either be carried out by using chlorine (direct chlorination) or hydrogen chloride (oxychlorination) as a chlorinating agent. It is also produced by oxychlorination—ethylene, hydrogen chloride, and air are reacted at about 250 °C with a copper chloride catalyst. In the United States, almost all ethylene dichloride produced at present is used as the starting material for preparation of vinyl chloride monomer.

일반 설명

Ethylene Dichloride is a clear colorless liquid with a pleasant chloroform-like smell that emits toxic fumes of hydrochloric acid when heated to decomposition. Denser than water and insoluble in water. Vapors are heavier than air. Density 10.4 lb/gal. It is primarily used to produce vinyl chloride. Inhalation exposure to this substance induces respiratory distress, nausea and vomiting and affects the central nervous system, liver and kidneys. It is mutagenic in animals and is reasonably anticipated to be a human carcinogen. (NCI05)

공기와 물의 반응

Highly flammable. Slightly water soluble.

반응 프로필

Liquid ammonia and 1,2-Dichloroethane can cause an explosion when mixed, NFPA 491M, 1991. A tank of dimethyl amino propyl amine exploded violently when 1,2-Dichloroethane reacted with wet 1,2-Dichloroethane which had been the tank's previous contents [Doyle 1973]. Halogenated aliphatic compounds, such as 1,2-Dichloroethane , are moderately or very reactive. Reactivity generally decreases with increased degree of substitution of halogen for hydrogen atoms. Materials in this group are incompatible with strong oxidizing and reducing agents. Also, they are incompatible with many amines, nitrides, azo/diazo compounds, alkali metals, epoxides, aluminum

위험도

Toxic by ingestion, inhalation, and skin absorption; strong irritant to eyes and skin; a carcinogen. Flammable, dangerous fire risk, explosive limits in air 6–16%. Possible carcinogen.

건강위험

The toxic symptoms from exposure to 1,2-dichloroethane include depression of the cen tral nervous system, irritation of the eyes,corneal opacity, nausea, vomiting, diarrhea,ulceration, somnolence, cyanosis, pulmonaryedema, and coma. Repeated exposure mayproduce injury to the kidney and liver. Inges tion of the liquid can cause death. A fataldose in humans may range between 30 and50 mL. The liquid is an irritant to the skinand damaging to the eyes.
LC50 value, inhalation (rats): 1000 ppm/7 hLD50 value, oral (rabbits): 860 mg/kg
1,2-Dichloroethane tested positive to thehistidine reversion–Ames test and othermutagenic tests. The compound is carcino genic to animals. Inhalation or oral adminis tration caused lung, gastrointestinal, and skincancers in mice and rats.

화재위험

Flammable liquid; burns with a smoky flame; flash point (closed cup) 13°C (56°F), (open cup) 18°C (65°F); vapor pressure 62 torr at 20°C (68°F); the vapor is heavier than air and can travel a considerable distance to a source of ignition and flash back; autoignition tem perature 413°C (775°F); fire-extinguishing agent: dry chemical, CO2, or foam; water may be used to keep fire-exposed contain ers cool and to disperse the vapors and flush away any spill.
1,2-Dichloroethane forms explosive mix tures with air, with LEL and UEL val ues of 6.2% and 16.0% by volume in air, respectively. Its reactions with alkali met als, powdered aluminum, or magnesium can be violent. It forms explosive mixtures with nitrogen tetroxide.

상품명

BORER SOL®; BROCIDE®; DESTRUXOL BORER-SOL®; DOWFUME®[C]; DUTCH LIQUID®; DUTCH OIL®

Safety Profile

Confirmed carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data. An experimental transplacental carcinogen. A human poison by ingestion. Poison experimentally by intravenous and subcutaneous routes. Moderately toxic by inhalation, skin contact, and intraperitoneal routes. Human systemic effects by ingestion and inhalation: flaccid paralysis without anesthesia (usually neuromuscular blockage), somnolence, cough, jaundce, nausea or vomiting, hypermoulity, diarrhea, ulceration or bleeding from the stomach, fatty liver degeneration, change in cardiac rate, cyanosis, and coma. It may also cause dermatitis, edema of the lungs, toxic effects on the kidneys, and severe corneal effects. A strong narcotic. Experimental teratogenic and reproductive effects. A skin and severe eye irritant, and strong local irritant. Its smell and irritant effects warn of its presence at relatively safe concentrations. Human mutation data reported.

잠재적 노출

In recent years, 1,2-dichloroethane is used in the production of vinyl chloride and as a leadscavenging agent in petrol; it has found wide use in the manufacture of ethylene glycol, diaminoethylene, polyvinyl chloride; nylon, viscose rayon; styrenebutadiene rubber, and various plastics. It is a solvent for resins, asphalt, bitumen, rubber, cellulose acetate; cellulose ester; and paint; a degreaser in the engineering, textile, and petroleum industries; and an extracting agent for soybean oil and caffeine. It is also used as an antiknock agent in gasoline; a pickling agent; a fumigant; and a dry-cleaning agent. It has found use in photography, xerography, and water softening; and also in the production of adhesives, cosmetics, pharmaceuticals, and varnishes.

Carcinogenicity

1,2-Dichloroethane is reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals.

환경귀착

Biological. Methanococcus thermolithotrophicus, Methanococcus deltae, and Methanobacterium thermoautotrophicum metabolized 1,2-dichloroethane releasing methane and ethylene (Belay and Daniels, 1987). 1,2-Dichloroethane showed slow to moderate biodegradative activity with concomitant rate of volatilization in a static-culture flask-screening test (settled domestic wastewater inoculum) conducted at 25 °C. At concentrations of 5 and 10 mg/L, percent losses after 4 wk of incubation were 63 and 53, respectively. At a substrate concentration of 5 mg/L, 27% was lost due to volatilization after 10 d (Tabak et al., 1981).
Photolytic. Titanium dioxide suspended in an aqueous solution and irradiated with UV light (λ = 365 nm) converted 1,2-dichloroethane to carbon dioxide at a significant rate (Matthews, 1986).
The rate constant for the reaction of 1,2-dichloroethane and OH radicals in the atmosphere at 300 K is 1.3 x 10-11 cm3/molecule?sec (Hendry and Kenley, 1979). At 296 K, a photooxidation rate constant of 2.2 x 10-13 cm3/molecule?sec was reported for the reaction with OH radicals resulting in a half-life of 1.7 months (Howard and Evenson, 1976).
Chemical/Physical. Anticipated products from the reaction of 1,2-dichloroethane with ozone or OH radicals in the atmosphere are chloroacetaldehyde, chloroacetyl chloride, formaldehyde, and ClHCHO (Cupitt, 1980).

신진 대사 경로

Resting cell suspensions of the soil methylotroph Methylosinus trichosporium OB-3b rapidly dehalogenate 1,2-dichloroethane, resulting in the formation of chloroethanol via direct hydroxylation of one of the C-Cl bonds, and this ethanol is rapidly oxidized to yield chloroacetic acid.

저장

Ethylene dichloride should be kept protected against physical damage. Store in a cool, dry, well-ventilated location, away from any area where the fi re hazard may be acute. Outside or detached storage is preferred. Separate from incompatibles. Containers should be bonded and grounded for transfer to avoid static sparks.

운송 방법

UN1184 Ethylene dichloride, Hazard Class: 3; Labels: 3-Flammable liquid, 6.1-Poisonous materials. Note: United States DOT 49CFR172.101, Inhalation Hazardous Chemical as 1,2-Dichloroethane

Purification Methods

It is usually prepared by chlorinating ethylene, so that likely impurities include higher chloro derivatives and other chloro compounds depending on the impurities originally present in the ethylene. It forms azeotropes with water, MeOH, EtOH, trichloroethylene, CCl4 and isopropanol. Its azeotrope with water (containing 8.9% water, and b 77o) can be used to remove gross amounts of water prior to final drying. As a preliminary purification step, it can be steam distilled, and the lower layer is treated as below. Shake it with conc H2SO4 (to remove alcohol added as an oxidation inhibitor), wash with water, then dilute KOH or aqueous Na2CO3 and again with water. After an initial drying with CaCl2, MgSO4 or by distillation, it is refluxed with P2O5, CaSO4 or CaH2 and fractionally distilled. Carbonyl-containing impurities can be removed as described for chloroform. [Beilstein 1 IV 131.]

Toxicity evaluation

The estimated daily intake of 1,2-dichloroethane was similar for each rat strain at each dose level. Rats administered drinking water containing 8,000 ppm 1,2-dichloroethane received an esti mated intake of about 500-725 mg/kg per day. This estimated daily intake is close to the report ed oral LDso for 1,2-dichloroethane adminis tered by gavage (680-850 mg/kg) (McCollister et al., 1956); however, intake of this dose over 24 hours rather than as a bolus resulted in little toxicity.
1,2-Dichloroethane toxicity administered by gavage or in formulated drinking water was compared in F344/N rats. Gavage doses were calculated to be approximately equivalent (in milligrams per kilogram) to the range of expo sures resulting from the formulated water mix tures. The F344/N rats were more sensitive to 1,2-dichloroethane administered by gavage than in drinking water, as evidenced by the fact that all males receiving 240 and 480 mg/kg and 9/10 females receiving 300 mg/kg died before the end of the studies.
Toxic encephalopathy is the most common and serious disorder resulting from DCE intoxication.

비 호환성

May form explosive mixture with air. Reacts violently with strong oxidizers and caustics; chemically active metals, such as magnesium or aluminum powder, sodium and potassium; alkali metals; alkali amides; liquid ammonia. Decomposes to vinyl chloride and HCl above 600℃. Attacks plastics, rubber, coatings. Attacks many metals in presence of water.

폐기물 처리

Incineration, preferably after mixing with another combustible fuel. Care must be exercised to assure complete combustion to prevent the formation of phosgene. An acid scrubber is necessary to remove the halo acids produced

주의 사항

Occupational workers should avoid use of ethylene dichloride along with oxidizing agents, strong alkalis, strong caustics, magnesium, sodium, potassium, active amines, ammonia List of Chemical Substances

1,2-디클로로에탄 준비 용품 및 원자재

원자재

준비 용품


1,2-디클로로에탄 공급 업체

글로벌( 445)공급 업체
공급자 전화 이메일 국가 제품 수 이점
Hebei Mojin Biotechnology Co., Ltd
+8613288715578
sales@hbmojin.com China 12452 58
Henan Fengda Chemical Co., Ltd
+8613613820652
info@fdachem.com China 5505 58
Shanghai Daken Advanced Materials Co.,Ltd
+86-371-66670886
info@dakenam.com China 14936 58
Henan Tianfu Chemical Co.,Ltd.
+86-0371-55170693 +86-19937530512
info@tianfuchem.com China 21700 55
Hubei Jusheng Technology Co.,Ltd.
18871490254
linda@hubeijusheng.com CHINA 28180 58
Hebei Guanlang Biotechnology Co., Ltd.
+86-19930503282
alice@crovellbio.com China 8823 58
Xiamen AmoyChem Co., Ltd
+86-592-6051114 +8618959220845
sales@amoychem.com China 6387 58
Xi'an Kono chem co., Ltd.,
029-86107037 13289246953
info@konochemical.com China 2995 58
Hubei xin bonus chemical co. LTD
86-13657291602
linda@hubeijusheng.com CHINA 22968 58
Shandong chuangyingchemical Co., Ltd.
18853181302
sale@chuangyingchem.com CHINA 5909 58

1,2-디클로로에탄 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved