ChemicalBook
Chinese English Japanese Germany Korea

알릴아민

알릴아민
알릴아민 구조식 이미지
카스 번호:
107-11-9
한글명:
알릴아민
동의어(한글):
3-아미노프로펜;2-프로펜-1-아민;알릴아민
상품명:
Allylamine
동의어(영문):
AA;Allylamin;AllyaMine;ALLYLAMINE;allylaMate;CH2=CHCH2NH2;3-Aminopropen;2-Propenamine;3-AMINOPROPENE;MONOALLYLAMINE
CBNumber:
CB8337162
분자식:
C3H7N
포뮬러 무게:
57.09
MOL 파일:
107-11-9.mol

알릴아민 속성

녹는점
-88 °C
끓는 점
53 °C(lit.)
밀도
0.763
증기 밀도
2 (vs air)
증기압
4.09 psi ( 20 °C)
굴절률
n20/D 1.420(lit.)
인화점
−20 °F
저장 조건
Flammables area
용해도
miscible with water, alcohol, chloroform and ether
물리적 상태
Crystalline or Granular Powder
산도 계수 (pKa)
9.49(at 25℃)
색상
White or almost white
수용성
miscible
감도
Air Sensitive
Merck
14,287
BRN
635703
안정성
Stability Air sensitive. Serious fire hazard. Highly flammable - note low flash point. May be ignited at temperatures close to ambient.
CAS 데이터베이스
107-11-9(CAS DataBase Reference)
NIST
2-Propen-1-amine(107-11-9)
EPA
Allylamine (107-11-9)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 F,T,N
위험 카페고리 넘버 11-23/24/25-51/53
안전지침서 9-16-24/25-45-61
유엔번호(UN No.) UN 2334 6.1/PG 1
WGK 독일 2
RTECS 번호 BA5425000
F 고인화성물질 10
TSCA Yes
위험 등급 6.1
포장분류 I
HS 번호 29211980
유해 물질 데이터 107-11-9(Hazardous Substances Data)
독성 LD50 i.p. in mice: 49 mg/kg (Hine)
그림문자(GHS):
신호 어:
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H301 삼키면 유독함 급성 독성 물질 - 경구 구분 3 위험 P264, P270, P301+P310, P321, P330,P405, P501
H311 피부와 접촉하면 유독함 급성 독성 물질 - 경피 구분 3 위험 P280, P302+P352, P312, P322, P361,P363, P405, P501
H331 흡입하면 유독함 급성 독성 물질 흡입 구분 3 위험 P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H411 장기적 영향에 의해 수생생물에 유독함 수생 환경유해성 물질 - 만성 구분 2
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P405 밀봉하여 저장하시오.

알릴아민 MSDS


Allylamine

알릴아민 C화학적 특성, 용도, 생산

화학적 성질

colourless liquid

화학적 성질

Allylamine is a highly flammable, colorless liquid. Strong ammonia odor.

화학적 성질

Allylamine is highly reactive, combining the reactivity of amines with the unsaturation of the allyl group (Schweizer et al 1978). Reaction with halogens, for example, gives the corresponding halogenated propylamine in high yield.

용도

In the manufacture of mercurial diuretics.

용도

Allylamine ismanufactured fromallyl chloride andammonia. It is used as a solvent and in organic syntheses, including the synthesis of rubber, mercurial diuretics, sedatives, and antiseptics (238). It is also used in the synthesis of ion-exchange resins.

생산 방법

Allylamine is produced by reaction of allyl chloride with ammonia. The amine is also a natural constituent of foodstuffs (Shumkova and Karpova 1981; Mochalov et al 1981) and is present in wastewater from oil shale retorting (Daughton et al 1985).

일반 설명

A colorless to light yellow colored liquid with a strong ammonia-like odor. Less dense than water. Vapors are heavier than air. Toxic by inhalation, ingestion and skin absorption. Irritates skin, eyes and mucous membranes. Flash point below 0°F. Boiling point 130°F. Used to make pharmaceuticals and other chemicals.

공기와 물의 반응

Highly flammable. Water soluble.

반응 프로필

Allylamine reacts violently with strong oxidizing agents and acids. Attacks copper and copper compounds [Handling Chemicals Safely 1980. p. 123]. Reacts with hypochlorites to give N-chloroamines, some of which are explosives when isolated [Bretherick 1979. p. 108].

건강위험

Acute: an eye, skin, and respiratory tract irritant, which is highly toxic if inhaled or ingested and moderately toxic if absorbed on skin. Ingestion or inhalation may cause death or permanent injury after very short exposure to small quantities. Skin absorption may cause irreversible and reversible changes. Toxic air concentration (TClo) in humans is 5 ppm over 5 minutes. Vapors are extremely unpleasant and may ensure voluntary avoidance of dangerous concentrations. Will irritate nose and throat at 2.5 ppm.

건강위험

Allylamine is a strong eye and respiratory tract irritant (Windholz et al 1983) and exposure to it causes transient irritation of mucous membranes of the nose, eye and mouth with lacrimation, coryza and sneezing (HSDB 1989). Exposure to 14 p.p.m. allylamine caused intolerable irritation of the eyes and respiratory tract (Grant 1974).

화재위험

Flammable when exposed to heat, sparks, or flame. Vapor forms explosive mixtures with air over a wide range. Use caution when approaching fire and applying water. Vapor explosion and poison hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Can react with oxidizing materials. When heated to decomposition, Allylamine emits toxic fumes. Avoid oxidizing materials. Stable, avoid heating to decomposition. May become unstable at elevated temperatures and pressures or may react with water with non-violent release of energy.

공업 용도

Allylamine is used in the synthesis of ion-exchange resins and for water-dispersible copolymers useful for water purification and as flocculating agents (Schweizer et al 1978). The amine is also used for the preparation of pharmaceuticals including mercurial diuretics and antifungal agents (HSDB 1989).

Safety Profile

Poison by inhalation, ingestion, intraperitoneal, and skin contact routes. Human systemic effects by inhalation: lacrymation and lung effects. A systemic irritant. Mutation data reported. A severe eye and skin irritant. Extraordnary precautions against fumes are advised. Dangerous fire and explosion hazard when exposed to heat, flame, or oxidzers. Highly reactive. When heated to decomposition it emits toxic fumes of NOx. To fight fire, use alcohol foam, CO2, dry chemical. See also ALLYL COMPOUNDS and AMINES.

잠재적 노출

Compound

신진 대사

The uptake, tissue distribution, excretion and pharmacokinetics of a 450 mg/kg oral dose of [14C]-allylamine has been studied over a 2 h period in male Sprague-Dawley rats (Boor 1985). The amine was rapidly absorbed from the gastrointestinal tract and quickly accumulated and then eliminated from tissues with a short halflife of less than 1 h that seemed to fit a one compartment model. The 14C-label was rapidly excreted in urine and no radioactivity was found in feces. Allylamine or its metabolites showed an unusual predilection for accumulating in elastic and muscular arteries with the highest radioactivity (5- to 10-fold higher than most other organs) occurring in the aorta. Radioactivity in all other tissues was generally much lower and fairly equal. At 5,10,15 and 20 min after an i.v. dose of [14C]-allylamine, 30 to 33% of the admitted radioactivity was localized in the aortas of adult Sprague-Dawley rats. By 30 min, 17% of the administered dose was still present in that tissue (Hysmith and Boor 1985). Upon differential centrifugation most of the radioactivity in the aorta was found to be localized in the mitochondria. Further in vitro investigations (Hysmith and Boor 1987) showed the specific binding of radioactivity from [14C]-allylamine to isolated rat aorta and heart mitochondria at both high affinity and low affinity binding sites. As much as 23 and 43% of the bound radioactivity was covalently linked to aorta and heart mitochondria, respectively. The monoamine oxidase B inhibitor, deprenyl, significantly reduced both the specific and covalent binding of radioactivity from [14C]-allylamine in phospholipase treated mitochondria while the benzylamine oxidase inhibitor, semicarbazide, had no effect on [14C]-allylamine binding. These results suggest that monoamine oxidase can convert allylamine to a highly reactive metabolite that selectively covalently binds to heart mitochondria and that this may explain the cardiotoxicity associated with this amine.
In vitro studies show that allylamine is converted by homogenates of various rat tissues (heart, aorta, skeletal muscle, lung) to acrolein (Boor et al 1981; Nelson and Boor 1982). Conversion of allylamine to acrolein in human tissue was 58, 8 and 6% in aorta, myocardium and liver, respectively, while in the rat the percentages of acrolein formation were 95, 18, 9 and 5% in aorta, lung, skeletal muscle, and heart preparations, respectively (Boor and Nelson 1982). Purified bovine plasma amine oxidase and porcine kidney diamine oxidase converted allylamine to acrolein in vitro (Nelson and Boor 1982). Studies with selective inhibitors suggested that benzylamine oxidase is the active enzyme in oxidizing allylamine. Inhibition of benzylamine oxidase with either semicarbazide or phenelzine protected aortic smooth muscle cells from allylamine-induced cytolethal injury (Hysmith and Boor 1988). Inhibition of benzylamine oxidase markedly altered the subcellular distribution of radioactivity from [14C]-allylamine in aortic smooth muscle cells, with the administered radioactivity no longer being localized in the mitochondria. The sole urinary metabolite of allylamine in vivo has been identified as 3-hydroxypropylmercapturic acid (Boor et al 1987; Kage and Young 1972). Parallel experiments showed glutathione (GSH) depletion in several organs, the most marked occurring in aorta, blood and lung. These findings indicate that allylamine was metabolized in vivo to the highly reactive aldehyde, acrolein, which was subsequently converted to a mercapturic acid through a GSH conjugation pathway.

운송 방법

UN2334 Allylamine, Hazard class: 6.1; Labels: 6.1-Poison Inhalation Hazard, 3-Flammable liquids, Inhalation Hazard Zone B.

Purification Methods

Purify allylamine by fractional distillation from calcium chloride. It causes sneezing and tears. [Beilstein 4 IV 1057.]

비 호환성

May form explosive mixture with air. Oxidizing materials and acids may cause a violent reaction. Attacks copper and corrodes active metals (i.e., aluminum, zinc, etc.).

폐기물 처리

High temperature incineration; encapsulation by resin or silicate fixation.

알릴아민 준비 용품 및 원자재

원자재

준비 용품


알릴아민 공급 업체

글로벌( 0)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점

알릴아민 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved