산화알루미늄

산화알루미늄
산화알루미늄 구조식 이미지
카스 번호:
1344-28-1
한글명:
산화알루미늄
동의어(한글):
산화알루미늄;알루미나;알루미나알루미늄산화물디알루미늄트리산화물알루미트알미트마르톡신산화알루미나알루미나겔;산화알루미늄;합성사파이어;산화 알루미늄
상품명:
Aluminum oxide
동의어(영문):
Al2O3;ALUMINA;ALUMINIUM OXIDE;Neutral aluMina;Basic alumina;Activated alumina;Calcined alumina;AD3;RUBY;SAPPHIRE
CBNumber:
CB9853056
분자식:
Al2O3
포뮬러 무게:
101.96
MOL 파일:
1344-28-1.mol
MSDS 파일:
SDS

산화알루미늄 속성

녹는점
2040 °C(lit.)
끓는 점
2980°C
밀도
3.97
증기압
17 mm Hg ( 20 °C)
굴절률
1.765
인화점
2980°C
저장 조건
Sealed in dry,Room Temperature
용해도
에탄올과 혼합 가능.
물리적 상태
가루
색상
흰색에서 분홍색으로
Specific Gravity
3.97
냄새
냄새 없는
pH 범위
3.5 - 4.5
수소이온지수(pH)
7.0±0.5 ( in H2O)
수용성
불용성
Crystal Structure
Trigonal
Merck
14,356
노출 한도
ACGIH: TWA 1 mg/m3
OSHA: TWA 15 mg/m3; TWA 5 mg/m3
Dielectric constant
4.5(Ambient)
InChIKey
PNEYBMLMFCGWSK-UHFFFAOYSA-N
CAS 데이터베이스
1344-28-1(CAS DataBase Reference)
NIST
Aluminum oxide(1344-28-1)
EPA
Alumina (1344-28-1)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xi,F
위험 카페고리 넘버 36/37/38-67-36/38-11-36
안전지침서 26-24/25-16-7-36
WGK 독일 -
RTECS 번호 BD1200000
F 고인화성물질 3
TSCA Yes
위험 등급 8
HS 번호 28181010
유해 물질 데이터 1344-28-1(Hazardous Substances Data)
독성 Chronic inhalation of Al2O3 dusts may cause lung damage.
기존화학 물질 KE-01012
그림문자(GHS): GHS hazard pictogramsGHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 GHS hazard pictograms P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 GHS hazard pictograms P264, P280, P305+P351+P338,P337+P313P
H336 졸음 또는 현기증을 일으킬 수 있음 특정표적장기 독성 물질(1회 노출);마취작용 구분 3 경고 P261, P271, P304+P340, P312,P403+P233, P405, P501
예방조치문구:
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
NFPA 704
0
0 1

산화알루미늄 MSDS


alpha-Alumina

산화알루미늄 C화학적 특성, 용도, 생산

개요

Aluminum(III) oxide is also called aluminum oxide. In mineral form it is called corundum and is referred to as alumina in conjunction with mining and aluminum industries. Alumina exists in hydrated forms as alumina monohydrate, Al2O3?H2O and alumina trihydrate Al2O3?3H2O. The geologic source of aluminum is the rock bauxite, which has a high percentage of hydrated aluminum oxide. The main minerals in bauxite are gibbsite (Al(OH)3), diaspore (AlO(OH)), and boehmite (AlO(OH).

화학적 성질

Aluminum oxide occurs as a white crystalline powder. Aluminum oxide occurs as two crystalline forms: α-aluminum oxide is composed of colorless hexagonal crystals, and γ-aluminum oxide is composed of minute colorless cubic crystals that are transformed to the α-form at high temperatures.

물리적 성질

Al2O3 Colorless hexagonal crystal; refractive index 1.768; density 3.965 g/cm3 (at 25°C); mp 2072°C; bp 2980°C; insoluble in water α-Al2O3 Colorless rhombic crystal; mp between 2005 to 2025°C ; density 4.022 g/m3 ; hardness 9Moh γ-Al2O3 white microscopic crystal Al2O3•H2O colorless rhombic crystal; refractive index 1.624; density 3.014 g/cm3 Al2O3•3H2O white monoclinic crystal; refractive index 1.577; density 2.420 g/cm3 All forms are insoluble in water.

물리적 성질

White and translucent hard material used as abrasive for grinding. Excellent electric insulator and also wear resistant. Insoluble in water and in strong mineral acids, readily soluble in strong alkali hydroxides, attacked by HF or NH4HF2. Owing to its corrosion resistance, in inert atmosphere, in molten metals such as Mg, Ca, Sr, Ba, Mn, Sn, Pb, Ga, Bi, As, Sb, Hg, Mo, W, Co, Ni, Pd, Pt, and U it is used as crucible container for these liquid metals. Alumina is readily attacked in an inert atmosphere by molten metals such as Li, Na, Be, Al, Si, Ti, Zr, Nb, Ta, and Cu. Maximum service temperature 1950°C

출처

Occurs in nature in abundance; the principal forms are bauxites and laterites. The mineral corundum is used to produce precious gems, such as ruby and sapphire. Activated aluminas are used extensively as adsorbents because of their affinity for water and other polar molecules; and as catalysts because of their large surface area and appropriate pore sturcture. As adsorbents, they are used for drying gases and liquids; and in adsorption chromatography. Catalytic properties may be attributed to the presence of surface active sites (primarily OH- , O2- , and Al3+ ions). Such catalytic applications include sulfur recovery from H2S (Clauss catalysis); dehydration of alcohols, isomerization of olefins; and as a catalyst support in petroleum refining.

Characteristics

Aluminum Oxide (Alumina) is the most widely used oxide, chiefly because it is plentiful, relatively low in cost, and equal to or better than most oxides in mechanical properties. Density can be varied over a wide range, as can purity — down to about 90% alumina — to meet specific application requirements. Alumina ceramics are the hardest, strongest, and stiffest of the oxides. They are also outstanding in electrical resistivity, dielectric strength, are resistant to a wide variety of chemicals, and are unaffected by air, water vapor, and sulfurous atmospheres. However, with a melting point of only 2039°C, they are relatively low in refractoriness, and at 1371°C retain only about 10% of room-temperature strength. In addition to its wide use as electrical insulators and its chemical and aerospace applications, the high hardness and close dimensional tolerance capability of alumina make this ceramic suitable for such abrasion-resistant parts as textile guides, pump plungers, chute linings, discharge orifices, dies, and bearings.

용도

use of Aluminum oxide uses of Aluminum oxide

정의

The mineral corundum is natural aluminum oxide, and emery, ruby, and sapphire are impure crystalline varieties. The mixed mineral bauxite is a hydrated aluminum oxide.

제조 방법

Pure Aluminum oxide, needed to produce aluminum by the Hall process, is made by the Bayer process. The starting material is bauxite (Al2O3 • nH2O). The ore contains impurities, such as, SiO2, Fe2O3, TiO2, and Na2O. Most impurities are removed following treatment with caustic soda solution. Bauxite is dissolved in NaOH solution. Silica, iron oxides and other impurities are filtered out of the solution. CO2 is then bubbled through this solution. This precipitates are heated to remove water and produce Al2O3. These impurities are removed. Calcinations of bauxite produce Aluminum oxide of abrasive and refractory grades. Activated Aluminum oxide of amorphous type, as well as the transition Aluminum oxides of γ, η, χ, and ρ forms, are obtained from various aluminum hydroxides, such as, α- and β-trihydrates, α-monohydrate and Aluminum oxide gel. Such chemicals are also obtained from bauxite by the Bayer process.

생산 방법

The Bayer process begins by grinding the bauxite and mixing it with sodium hydroxide in a digester. The sodium hydroxide dissolves aluminum oxide components to produce aluminum hydroxide compounds. For gibbsite, the reaction is: Al(OH)3 + NaOH → Al(OH)4- + Na+. Insoluble impurities such as silicates, titanium oxides, and iron oxides are removed from the solution while sodium hydroxide is recovered and recycled. Reaction conditions are then modified so that aluminum trihydroxide (Al(OH)3) precipitates out. The reaction can be represented as the reverse of the previous reaction: Al(OH)4- + Na+ → Al(OH)3 + NaOH. Aluminum trihydroxide is calcined to drive off water to produce alumina:
Al(OH)3 Al2O3 + 3H2O.

화학 반응

Aluminum oxide exhibits amphoteric behavior. It is soluble both in acids and bases. With acids, it produces their corresponding salts. It froms Al2(SO4)3, Al(NO3)3 and AlCl3 upon reactions with H2SO4, HNO3, and HCl, respectively. In acid medium, it exists as a solvated aluminum ion, in which water molecules are hexacoordinated to trivalent Al3+, as shown below:
Al2O3 + 6H3O+3H2O ——› 2[Al(H2O)6]3+
(Rollinson, C. L., 1978., Aluminum Compounds. In Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed. Vol 2, pp 188-97. NY,: Wiley Interscience)
Aluminum oxide forms hydroxide in aqueous alkaline solution. The reaction is slow. The products, aluminum hydroxides (hydrated aluminas), contain hexacoordinated aluminohydroxide anion:
Al2O3 + 2OH– + 7H2O → 2[Al(OH)4(H2O)2]–
In its dry state, Aluminum oxide exhibiting basicity reacts with silica, forming aluminum silicate
Al2O3 + 3SiO2 → Al2(SiO3)3
Similarly, with basic CaO or MgO aluminate salts are formed
MgO + Al2O3 → Mg(AlO2)2 CaO + Al2O3 → Ca(AlO2)2
It forms aluminum nitride, AlN when heated with coal in a stream of nitrogen; and aluminum borate, Al2O3 •B2O3 when heated with B2O3 at 1000°C.

일반 설명

White odorless crystalline powder. Water insoluble. Properties (both physical and chemical) vary according to the method of preparation; different methods give different crystalline modifications. The variety formed at very high temperature is quite inert chemically.

공기와 물의 반응

Insoluble in water.

반응 프로필

Aluminum oxide is chemically amphoteric (behaves as a weak acid in the presence of base and as a weak base in the presence of acid). May act catalytically. May cause the exothermic polymerization of ethylene oxide. May cause the vigorous polymerization of vinyl chloride [MCA SD-75, 1970]. The degree of subdivision of the Aluminum oxide may affect the vigor of such reactions.

위험도

Toxic by inhalation of dust. Confirmed car- cinogen.

건강위험

The aluminas are considered to be nuisance dusts; their role in fibrogenic lung disease remains unclear.
Assessment of the toxicity of aluminas has been complicated by the chemical and physical variants of the compounds and inconsistencies in the nomenclature used to describe them.1 The group of compounds referred to as aluminas is composed of various structural forms of aluminum oxide, trihydroxide, and oxyhydroxide. 2 As these aluminas are heated, dehydration occurs, producing a variety of transitional forms; temperatures between 200 and 500°C result in low-temperature-range transitional aluminas characterized by increased catalytic activity and larger surface area.(Transitional aluminas include c, h, and g forms, which, taken together, were formerly termed “g.”)

Pharmaceutical Applications

Aluminum oxide is used mainly in tablet formulations.It is used for decoloring powders and is particularly widely used in antibiotic formulations. It is also used in suppositories, pessaries, and urethral inserts. Hydrated aluminum oxide is used in mordant dyeing to make lake pigments, in cosmetics, and therapeutically as an antacid.

Safety Profile

Suspected carcinogen with experimental neoplastigenic and tumorigenic data by implantation. Inhalation of finely divided particles may cause lung damage (Shaver's disease). Exothermic reaction above 200℃ with halocarbon vapors produces toxic HCl and phosgene. See also ALUMINUM COMPOUNDS

Safety

Aluminum oxide is generally regarded as relatively nontoxic and nonirritant when used as an excipient. Inhalation of finely divided particles may cause lung damage (Shaver's disease).
HUMAN HEALTH RISK ASSESSMENT FOR ALUMINIUM, ALUMINIUM OXIDE, AND ALUMINIUM HYDROXIDE

잠재적 노출

Most hazardous exposures to aluminum occur in smelting and refining processes. Aluminum is mostly produced by electrolysis of Al2O3 dissolved in molten cryolite (Na3AlF6). Aluminum is alloyed with copper, zinc, silicon, magnesium, manganese, and nickel; special additives may include chromium, lead, bismuth, titanium, zirconium, and vanadium. Aluminum and its alloys can be extruded or processed in rolling mills, wire works, forges, or foundries; and are used in the shipbuilding, electrical, building, aircraft, automobile, light engineering, and jewelry industries. Aluminum foil is widely used in packaging. Powdered aluminum is used in the paints and pyrotechnic industries. Alumina, emery, and corundum has been used for abrasives, refractories, and catalysts; and in the past in the first firing of china and pottery.

저장

Aluminum oxide should be stored in a well-closed container in a cool, dry, place. It is very hygroscopic.

운송 방법

UN1309 Aluminum powder, coated, Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN1383 Pyrophoric metals, n.o.s. or Pyrophoric alloys, n.o.s., Hazard Class: 4.2; Labels: 4.2-Spontaneously combustible material, Technical Name Required. UN1396 Aluminum powder, uncoated, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material. NA9260 (North America) Aluminum, molten, Hazard class: 9; Labels: 9-Miscellaneous hazardous material.

Purification Methods

Stir the oxide with hot 2M HNO3, either on a steam bath for 12hours (changing the acid every hour) or three times for 30minutes, then wash it with hot distilled water until the washings have pH 4, and follow by three washings with hot MeOH. The product is dried at 270o [Angyal & Young J Am Chem Soc 81 5251 1959]. For the preparation of alumina for chromatography see Chapter 1. [For  ,  and  Al2O3 see Becher in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 822-823 1963 and Wagner in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol II p 1662 1965.]

비 호환성

Aluminum oxide should be kept well away from water. It is incompatible with strong oxidizers and chlorinated rubber. Aluminum oxide also reacts with chlorine trifluoride, ethylene oxide, sodium nitrate, and vinyl acetate. Exothermic reactions above 2008℃ with halocarbon vapors produce toxic hydrogen chloride and phosgene fumes.

폐기물 처리

Consult with environmental regulatory agencies for guidance on acceptable disposalpractices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal of Aluminum Oxide-Disposal in a sanitary landfill. Mixing of industrial process wastes and municipal wastes at such sites is not encouraged however. Aluminum powder may be recovered and sold as scrap. Recycling and recovery is a viable option to disposal for aluminum metal and aluminum fluoride (A-57).

Regulatory Status

Included in the FDA Inactive Ingredients Database (oral tablets and topical sponge). Included in nonparenteral medicines licensed in the UK.

산화알루미늄 준비 용품 및 원자재

원자재

준비 용품


산화알루미늄 공급 업체

글로벌( 565)공급 업체
공급자 전화 이메일 국가 제품 수 이점
Shaanxi Haibo Biotechnology Co., Ltd
+undefined18602966907
qinhe02@xaltbio.com China 1000 58
Hebei Mojin Biotechnology Co., Ltd
+8613288715578
sales@hbmojin.com China 12456 58
Hebei Guanlang Biotechnology Co,.LTD
+8619930503252
daisy@crovellbio.com China 5964 58
Henan Bao Enluo International TradeCo.,LTD
+86-17331933971 +86-17331933971
deasea125996@gmail.com China 2503 58
Henan Fengda Chemical Co., Ltd
+86-371-86557731 +86-13613820652
info@fdachem.com China 7786 58
Henan Tianfu Chemical Co.,Ltd.
+86-0371-55170693 +86-19937530512
info@tianfuchem.com China 21691 55
Chemson Industrial (Shanghai) Co., Ltd.
86-21-65208861- 8007
sales1@chemson.com.cn CHINA 117 58
Hubei Jusheng Technology Co.,Ltd.
18871490254
linda@hubeijusheng.com CHINA 28180 58
Hebei Guanlang Biotechnology Co., Ltd.
+86-19930503282
alice@crovellbio.com China 8823 58
Xiamen AmoyChem Co., Ltd
+86-592-6051114 +8618959220845
sales@amoychem.com China 6387 58

산화알루미늄 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved