安全データシート

2-ブタノン

改訂日: 2024-01-24 版番号: 1

1. 化学品及び会社情報

製品識別子

製品名 : 2-ブタノン
CB番号 : CB4854386
CAS : 78-93-3
EINECS番号 : 201-159-0

同義語: MEK,メチルエチルケトン

物質または混合物の関連する特定された用途、および推奨されない用途

関連する特定用途 : 硝酸セルロース及び各種合成樹脂、ラッカー用溶剤、ブナN用接着剤、印刷インキ用、人造皮革、潤

滑油精製用溶剤、加硫促進剤、中間物、洗浄剤化粧品原料(爪化粧品)

推奨されない用途 : なし

会社ID

会社名 : Chemicalbook

住所: 北京市海淀区上地十街匯煌国際1号棟

電話 : 010-86108875

2. 危険有害性の要約

GHS分類

分類実施日

H25.8.22、政府向けGHS分類ガイダンス(H25.7版)を使用

GHS改訂4版を使用

物理化学的危険性

引火性液体 区分2

健康に対する有害性

急性毒性 (吸入:蒸気) 区分4

皮膚腐食性及び刺激性 区分2

眼に対する重篤な損傷性又は眼刺激性 区分2A

特定標的臓器毒性(単回ばく露) 区分2(腎臓)、区分3(気道刺激性、麻酔作用)

特定標的臓器毒性(反復ばく露) 区分1 (神経系)

分類実施日

環境に対する有害性はH18.3.31、GHS分類マニュアル(H18.2.10版)を使用

環境に対する有害性

2.2注意書きも含むGHSラベル要素

絵表示

GHS02	GHS07

注意喚起語

危険

危険有害性情報

H225 引火性の高い液体及び蒸気。

H319 強い眼刺激。

H336 眠気又はめまいのおそれ。

注意書き

安全対策

P210 熱 / 火花 / 裸火 / 高温のもののような着火源から遠ざけること。-禁煙。

P233 容器を密閉しておくこと。

P240 容器を接地すること / アースをとること。

P241 防爆型の【電気機器 / 換気装置 / 照明機器 / 機器】を使用すること。

P242 火花を発生させない工具を使用すること。

P243 静電気放電に対する予防措置を講ずること。

P261 粉じん/煙/ガス/ミスト/蒸気/スプレーの吸入を避けること。

P264 取扱い後は皮膚をよく洗うこと。

P271 屋外又は換気の良い場所でだけ使用すること。

P280 保護手袋 / 保護眼鏡 / 保護面を着用すること。

応急措置

P303 + P361 + P353 皮膚(又は髪)に付着した場合: 直ちに汚染された衣類を全て脱ぐこと。皮膚を流水 / シャワーで洗うこと。

P304 + P340 + P312 吸入した場合: 空気の新鮮な場所に移し、呼吸しやすい姿勢で休息させること。 気分が悪いときは医師に連絡すること。

P305 + P351 + P338 眼に入った場合:水で数分間注意深く洗うこと。次にコンタクトレンズを着用していて容易に外せる場合は外すこと。その後も洗浄を続けること。

P337 + P313 眼の刺激が続く場合: 医師の診察 / 手当てを受けること。

保管

P403 + P233 換気の良い場所で保管すること。容器を密閉しておくこと。

P403 + P235 換気の良い場所で保管すること。涼しいところに置くこと。

P405 施錠して保管すること。

廃棄

P501 内容物 / 容器を承認された処理施設に廃棄すること。

3. 組成及び成分情報

化学物質・混合物の区別

: 化学物質

別名

: Methyl ethyl ketone

MEK

Ethyl methyl ketone

化学特性(示性式、構造式等) : C4H8O

分子量: 72.11 g/molCAS番号: 78-93-3EC番号: 201-159-0

化審法官報公示番号 : 2-542

安衛法官報公示番号 :-

4. 応急措置

4.1 必要な応急手当

一般的アドバイス

この安全データシートを担当医に見せる。

吸入した場合

吸入後は新鮮な空気を吸うこと。ただちに医師の診察を受けること。

皮膚に付着した場合

皮膚に接触した場合: すべての汚染された衣類を直ちに脱ぐこと。 皮膚を流水/シャワーで洗うこと。

眼に入った場合

眼に触れた後は多量の水ですすぐこと。 眼科医の診察を受けること。 コンタクトレンズをはずす。

飲み込んだ場合

飲み込んだ後はただちに水を飲ませること(多くても2杯) 医師に相談する。

4.2 急性症状及び遅発性症状の最も重要な徴候症状

もっとも重要な既知の徴候と症状は、ラベル表示(項目2.2を参照)および/または項目11に記載されている

4.3 緊急治療及び必要とされる特別処置の指示

データなし

5. 火災時の措置

5.1 消火剤

使ってはならない消火剤

本物質/混合物に対する消火剤の制限なし

5.2 特有の危険有害性

炭素酸化物

かなりの距離にわたり逆火が考えられる。, 火災時に容器爆発をおこす可能性がある。

逆火に注意する。

蒸気は空気より重く、床に沿って広がることがある。

周囲温度で空気と反応して爆発性混合物を生じる。

5.3 消防士へのアドバイス

火災時には、自給式呼吸器を着用する。

5.4 詳細情報

容器を危険ゾーンから移動させて水で冷やすこと。消火水が、地上水または地下水のシステムを汚染しないようにする。

6. 漏出時の措置

6.1 人体に対する注意事項、保護具及び緊急時措置

救急隊員以外への助言: 蒸気、エアゾールを吸入してはならない。 触れないようにすること。 十分な換気を確保する。 熱や発火源から遠ざける。 危険なエリアから避難し、緊急時手順に従い、専門家に相談のこと個人保護については項目 8 を参照する。

6.2 環境に対する注意事項

物質が排水施設に流れ込まないようにする。爆発のおそれ。

6.3 封じ込め及び浄化の方法及び機材

排水溝に蓋をすること。こぼれたら集めて結合させ、ポンプですくい取る。 物質の制限があれば順守のこと (セクション 7、10参照) 液体吸収剤(例. Chemizorb®)で処置すること。 正しく廃棄すること。関係エリアを清掃のこと。

6.4参照すべき他の項目

廃棄はセクション13を参照。

7. 取扱い及び保管上の注意

7.1 安全な取扱いのための予防措置

安全取扱注意事項

換気フードの下で作業すること。吸い込まないこと。 蒸気やエアロゾルが生じないようにすること。

火災及び爆発の予防

炎、熱および発火源から遠ざける。静電気放電に対する予防措置を講ずること。

衛生対策

汚れた衣類は取り替えること。事前に皮膚を保護することが望ましい。本物質を扱った後は手を洗うこと。注意事項は項目2.2を参照。

7.2配合禁忌等を踏まえた保管条件

保管クラス

保管クラス (ドイツ) (TRGS 510): 3: 可燃性液体

保管条件

不活性ガス下に貯蔵する。容器を密閉し、乾燥した換気の良い場所に保管する。 熱や発火源から遠ざける。吸湿性の.

7.3 特定の最終用途

項目1.2に記載されている用途以外には、その他の特定の用途が定められていない

8. ばく露防止及び保護措置

8.1 管理濃度

コンポーネント別作業環境測定パラメータ

ACL: 200 ppm - 作業環境評価基準、健康障害防止指

TWA: 200 ppm - 米国。 ACGIH限界閾値(TLV)

8.2 曝露防止

適切な技術的管理

汚れた衣類は取り替えること。事前に皮膚を保護することが望ましい。本物質を扱った後は手を洗う こと。

保護具

眼/顔面の保護

NIOSH (US) またはEN 166 (EU) などの適切な政府機関の規格で試験され、認められた眼の保護具を使用する。 保護眼鏡

皮膚及び身体の保護具

手袋を着用して取扱う。 使用前に、必ず手袋を検査する。 (手袋外面に触れずに)適切に手袋を脱ぎ、本製品の皮膚への付着を避ける。 適用法令およびGLPに従い、使用後に汚染手袋を廃棄する。 手を洗い、乾燥させる。

選ばれた防護手袋は、EU指令2016/425の仕様と、それから派生する規格EN374を満たすものでなければならない。

飛沫への接触

材質: ブチルゴム

最小厚: 0.3 mm

破過時間: 292 min

試験物質: Butoject® (KCL 897 / Aldrich Z677647, Size M)

データソース: KCL GmbH, D-36124 Eichenzell, 電話 +49 (0)6659 87300, e-mail sales@kcl.de,

試験方法: EN374

EN374とは違った条件の下で、溶液の中、または他の物質と混ぜて使われる場合は、EC認可手袋の供給業者に問い合わせる。 この勧告は単なる助言であり、予想される用途の特定状況に精通した産業衛生専門家並びに安全管理者により評価されなければならない。 任意の使用方法について許可を受けていると理解すべきではない。

身体の保護

難燃静電気保護服。

呼吸用保護具

気化ガス/エアロゾル発生時に必要

次の規格に準拠しているフィルター式呼吸器保護具を推奨します。 DIN EN 143、DIN 14387 および使用済み呼吸器保護システムに関連する他の付属規格。

環境暴露の制御

物質が排水施設に流れ込まないようにする。 爆発のおそれ。

9. 物理的及び化学的性質

Information on basic physicochemical properties

形状 液体: ICSC(J) (1998)

色	無色: ICSC(J) (1998)	
臭い	特徴的な臭気 : ICSC(J) (1998)	
臭いのしきい(閾)値	情報なし	
рН	情報なし	
-86℃(融点): GESTIS(2014)		
80℃(沸点): GESTIS(2014)		
-9°C (closed cup): HSDB(2014)		
情報なし		
非該当		
下限 1.8 vol%、上限 11.5 vol%: ICSC(J) (1998)		
10.5kPa (20℃) : ICSC(J) (1998)		
2.41 :ICSC(J) (1998)		
0.805 (20°C/4°C): Merck (Access on June 2005)		
水: 27.5% : Merck (Access on June 2005) アルコール、ベンゼン、エーテル:可溶 :Merck (Access on		
June 2005)		
logPow=0.29: ICSC(J) (1998)		
475℃:GESTIS(2014), 404℃: HSDB(2014)		
情報なし		
0.40mPa · s (20℃) :Ullmanns (E) (5th, 1995)		

融点 • 凝固点

-86℃(融点): GESTIS(2014)

沸点、初留点及び沸騰範囲

80℃(沸点): GESTIS(2014)

引火点

-9℃ (closed cup): HSDB(2014)

蒸発速度(酢酸ブチル=1)

情報なし

燃燒性(固体、気体)

非該当

燃焼又は爆発範囲

下限 1.8 vol%、上限 11.5 vol%: ICSC(J) (1998)

蒸気圧

10.5kPa (20°C) : ICSC(J) (1998)

蒸気密度

2.41 :ICSC(J) (1998)

比重(相対密度)

0.805 (20°C/4°C): Merck (Access on June 2005)

溶解度

水: 27.5%: Merck (Access on June 2005) アルコール、ベンゼン、エーテル:可溶: Merck (Access on June 2005)

n-オクタノール/水分配係数

logPow=0.29: ICSC(J) (1998)

自然発火温度

475℃:GESTIS(2014), 404℃: HSDB(2014)

分解温度

情報なし

粘度(粘性率)

0.40mPa ⋅ s (20°C) :Ullmanns (E) (5th, 1995)

10. 安定性及び反応性

10.1 反応性

蒸気は空気と爆発性混合物を形成することがある。

10.2 化学的安定性

標準的な大気条件(室温)で化学的に安定。

10.3 危険有害反応可能性

データなし

10.4 避けるべき条件

湿気への暴露。

警告

10.5 混触危険物質

酸化剂,強還元剂

10.6 危険有害な分解生成物

火災の場合:項目5を参照

11. 有害性情報

急性毒性

経口

ラットのLD50値として、2,737mg/kg (環境省リスク評価第6巻 (2008)、IRIS TR (2003)、ATSDR (1992))、5,522 mg/kg (PATTY (6th, 2012)、IRIS TR (2003)、ACGIH (7th, 2001)、ATSDR (1992)、EHC 143 (1992))、2,000-6,000 mg/kg (DFGOT vol. 12 (1999)、EHC 143 (1993))、Chemical Book

2,600-5,400 mg/kg (SIDS (2011)) との報告に基づき、区分外とした。新たな情報源 (PATTY (6th, 2012)、環境省リスク評価第6巻 (2008)、DFGOT vol. 12 (1999)) を追加し、区分を見直した。

経皮

ウサギのLD50値として、> 5,000 mg/kg (PATTY (6th, 2012))、6,480 mg/kg (環境省リスク評価第6巻 (2008))、> 8,000 mg/kg (PATTY (6th, 2012)、DFGOT vol. 12 (1999)、EHC 143 (1993)、ATSDR (1992))、6,400-8,000 mg/kg (SIDS (2011))、13,000mg/kg (PATTY (6th, 2012)) との報告に基づき、区分外とした。

吸入:ガス

GHSの定義における液体である。

吸入:蒸気

ラットのLC50値 (4時間) として、11,700ppm との報告 (PATTY (6th, 2012)、IRIS TR (2003)、EHC 143 (1993)、ATSDR (1992)) に基づき、区分4とした。なお、LC50値が飽和蒸気圧濃度 (103,653 ppm) の90%より低いため、ミストを含まないものとしてppmを単位とする基準値を適用した。情報源 (PATTY (6th, 2012)) を更新し、区分を見直した。

吸入:粉じん及びミスト

データ不足のため分類できない。

皮膚腐食性及び皮膚刺激性

本物質をウサギの皮膚に適用した結果、軽度から中等度の刺激性ありとの報告や (SIDS (2011)、EHC 143 (1993)、DFGOTvol. 12 (1999))、軽度の刺激性ありとの報告がある (EHC 143 (1993)、DFGOT vol. 12 (1999)、PATTY (6th, 2012)、ATSDR (1992))。また、ヒトでは、ばく露による刺激性はみられなかったとの報告がある (PATTY (6th, 2012))。以上、ウサギの「中等度の刺激」に基づき区分2とした。

眼に対する重篤な損傷性又は眼刺激性

本物質をウサギの眼に適用した結果、重度の刺激性がみられたとの報告があり (SIDS (2011)、EHC 143 (1993)、DFGOT vol. 12 (1999))、角膜障害や強膜の出血、瞼の浮腫、化学火傷がみられたとの報告がある (EHC 143 (1993))。その他に、ウサギへの適用試験において、24時間後の評点の平均値は角膜混濁2.5、結膜発赤2であったが、7日以内にほぼ回復していたとの報告や (ECETOC TR48 (1992))、軽度の刺激性ありとの報告がある (EHC 143 (1992)、DFGOT vol.12 (1999)、PATTY (6th, 2012)、ATSDR (1992))。ヒトでは、本物質のばく露により刺激性がみられたとの報告 (PATTY (6th, 2012))、刺激性はみられなかったとの報告の両方がある (PATTY (6th, 2012))。以上、「重度の刺激」に基づき区分2Aとした。なお、本物質はEU DSD分類において「X; R36」、EU CLP分類において「Eye Irrt.2 H319」に分類されている。

呼吸器感作性

データ不足のため分類できない。

皮膚感作性

データ不足のため分類できない。

生殖細胞変異原性

ガイダンスの改訂により「区分外」が選択できなくなったため、「分類できない」とした。すなわち、in vivoでは、マウス及びチャイニーズハムスター骨髄細胞の小核試験で陰性である(環境省リスク評価第6巻 (2008)、SIDS (2011)、EHC 143 (1993)、IRIS TR (2003)、PATTY (6th, 2012)、DFGOT vol. 12 (1999))。In vitroでは、細菌の復帰突然変異試験、哺乳類培養細胞の遺伝子突然変異試験、染色体異常試験で陰性である (NTP DB (Access on October 2014)、IRIS TR (2003)、環境省リスク評価第6巻 (2008)、ACGIH (7th, 2001)、SIDS (2011)、EHC 143 (1993)、PATTY (6th, 2012))。

発がん性

EPAでI (inadequate) に分類されている (IRIS (2003)) ことから、「分類できない」とした。

生殖毒性

ラットを用いた吸入経路での催奇形性試験において、母動物に影響 (体重増加抑制) のみられる用量 (3000 ppm) においても胎児に対してわずかな影響 (骨化遅延、過剰肋骨) がみられたのみで、奇形はみられていないとの報告がある (PATTY (6th, 2012)、SIDS (2011)、環境省リスク評価第6巻 (2008)、IRIS (2003) ACGIH (7th, 2001)、DFGOT vol.12 (1999))。また、マウスを用いた吸入経路での催奇形性試験において、母動物毒性 (肝臓の相対重量増加、腎臓の相対重量増加) がみられる用量 (3,000 ppm) において胎児にわずかな影響 (胎児体重減少) がみられたが有意な奇形の発生はみられていないとの報告がある (PATTY (6th, 2012)、SIDS (2011)、環境省リスク評価第6巻 (2008)、IRIS (2003) ACGIH (7th, 2001)、DFGOT vol.12 (1999))。以上、催奇形性はみられていない。旧分類では催奇形性試験の結果のみから区分外と分類していたが、生殖能に関する試験の報告がないことから分類できないとした。

特定標的臓器毒性(単回ばく露)

本物質は気道刺激性及び麻酔作用がある(環境省リスク評価第6巻 (2008)、ACGIH (7th, 2001)、ATSDR (1992))。ヒトにおいては、吸入ばく露で、頭痛、めまい、悪心、嘔吐、運動失調、眼のかすみ、ふらつき、過呼吸、眩暈、嗜眠、中枢神経系抑制作用、代謝性アシドーシス、意識喪失、経口摂取では意識喪失の報告がある (PATTY (6th, 2012)、環境省リスク評価第6巻 (2008)、HSDB (Access on September 2014)、ACGIH (7th, 2001)、ATSDR (1992)、EHC 143 (1993)、IRIS TR (2003))。 実験動物では、麻酔作用、ラットの経口投与1,080 mg/kgで腎臓の軽度の腎尿細管壊死が認められている (ACGIH (7th, 2001)、ATSDR (1992)、EHC 143 (1993)、PATTY (6th, 2012)、IRIS TR (2003)、HSDB (Access on September 2014))。ラットの腎臓への影響は区分2の範囲の用量で認められた。本物質は腎臓への影響、並びに気道刺激性、麻酔作用を有すると考えられる。以上より、区分2 (腎臓)、区分3 (気道刺激性、麻酔作用)とした。

特定標的臓器毒性(反復ばく露)

ヒトでは本物質以外に他の溶媒へのばく露を含まない有害性知見として、慢性的な職業ばく露により、ニューロバシー (神経症) との診断には至らないが、神経伝達速度の低下がみられたとするイタリアでの報告、及び手指と腕の無感覚感を訴えた米国工場作業者の例が報告されており (EHC 143 (1993), DFGOT vol. 12 (1999))、これらの職業ばく露事例の知見より初期には本物質の反復ばく露影響として、ヒトで神経系障害の発生が懸念された。一方、IRISは関連する症例報告及び疫学研究結果は、ばく露の状況が明確でないこと、他の物質の混合ばく露であることなど問題があり、職場での本物質への反復ばく露が慢性的な神経障害の危険性を増加させるとの証拠は限定的で不確実であると結論している (IRIS TR (2003))。しかし、ACGIH は上気道への刺激のみならず、本物質又は本物質を含む溶媒への吸入ばく露による中枢及び末梢神経系への有害性影響を回避することを目的に本物質のTLV値を設定しており (ACGIH (7th, 2001))、本物質の単独又は他の溶剤との複合反復ばく露による影響として、神経系障害の発生を否定する強固な証拠は依然としてないと考えられる。一方、実験動物ではラットに本物質蒸気を5,000 ppm (14.7 mg/L: 1 ppm= 2.91 mg/m3 (ACGIH (7th, 2001)) で、90日間吸入ばく露したが、体重増加抑制、肝臓の重量増加 (生体適応反応と考えられた)以外に、一般毒性学的影響、神経毒性影響ともにみられていない (SIDS (2011))、EHC 143 (1993)、IRIS TR (2003)、環境省リスク評価第6巻 (2008))。この他、神経毒性の有無を検討したラットでの複数の吸入ばく露試験において、いずれも神経毒性は陰性の結果を示し (SIDS (2011))、本物質はn-ヘンキサンのようにジケトン代謝物 (直接的な神経毒性物質) を生成しないため、神経毒性を生じないと考察されている (SIDS (2011))。以上、ヒトで本物質の単独又は他の溶剤との複合反復ばく露により、中枢及び末梢神経系への有害性影響が生じる懸念は依然として持続していると考えられたため、区分1 (神経系) に分類した。

吸引性呼吸器有害性

13を超えない炭素原子で構成されたケトンで、動粘性率が0.50 mm2/sec (25 $\mathbb C$ 、CER計算値) であり、区分2に該当するため、現行分類ガイダンスに従い分類できない。

12. 環境影響情報

12.1 生態毒性

魚毒性

止水式試験 LC50 - Pimephales promelas (ファットヘッドミノウ) - 2,993 mg/l - 96 h

(OECD 試験ガイドライン 203)

ミジンコ等の水生無脊

止水式試験 EC50 - Daphnia magna (オオミジンコ) - 308 mg/l - 48 h

椎動物に対する毒性

(OECD 試験ガイドライン 202)

藻類に対する毒性

止水式試験 ErC50 - Pseudokirchneriella subcapitata - 1,972 mg/l - 72 h

(OECD 試験ガイドライン 201)

12.2 残留性 · 分解性

生分解性

好気性 - 曝露時間 28 d

結果: 98 % - 易分解性。

(OECD 試験ガイドライン 301D)

理論上の酸素要求

2,440 mg/g

(量)

備考: (Lit.)

BOD/ThBOD比

76 %

備考: (IUCLID)

12.3 生体蓄積性

データなし

12.4 土壌中の移動性

データなし

12.5 PBT および vPvB の評価結果

化学物質安全性評価が必要ではない/行っていないため、PBT/vPvB評価データはない。

12.6 内分泌かく乱性

データなし

12.7 他の有害影響

オゾン層への有害性

非該当

データなし

13. 廃棄上の注意

13.1 廃棄物処理方法

製品

内容物及び容器は、関連法規及び各自治体の条例等の規制に従い、産業廃棄物として適切に処理すること。

14. 輸送上の注意

14.1 国連番号

ADR/RID (陸上規制): 1193 IMDG (海上規制): 1193 IATA-DGR (航空規制): 1193

14.2 国連輸送名

ADR/RID (陸上規制): ETHYL METHYL KETONE IMDG (海上規制): ETHYL METHYL KETONE IATA-DGR (航空規制): Ethyl methyl ketone

14.3 輸送危険有害性クラス

ADR/RID (陸上規制): 3 IMDG (海上規制): 3 IATA-DGR (航空規制): 3

14.4 容器等級

ADR/RID (陸上規制): II IMDG (海上規制): II IATA-DGR (航空規制): II

14.5 環境危険有害性

ADR/RID: 非該当 IMDG 海洋汚染物質(該当・非該当): IATA-DGR (航空規制): 非該当

非該当

14.6 特別の安全対策

なし

14.7 混触危険物質

酸化剂, 強還元剂

15. 適用法令

化審法

優先評価化学物質

労働安全衛生法

名称等を表示すべき危険有害物(法第57条、施行令第18条別表第9) 名称等を通知すべき危険有害物(法第57条の2、施行令第18条の2別表第9) リスクアセスメントを実施すべき危険有害物(法第57条の3) 危険物・引火性の物 第2種有機溶剤等 作業環境評価基準

毒物及び劇物取締法

劇物

消防法

第4類引火性液体、第一石油類非水溶性液体

船舶安全法

引火性液体類

航空法

引火性液体

16. その他の情報

略語と頭字語

ADR: 道路による危険物の国際輸送に関する欧州協定

CAS: ケミカルアブストラクトサービス

EC50: 有効濃度 50%

IATA: 国際航空運送協会

IMDG: 国際海上危険物

LC50: 致死濃度 50%

LD50: 致死量 50%

RID: 鉄道による危険物の国際運送に関する規則

STEL: 短期暴露限度 TWA: 時間加重平均

参考文献

- 【1】労働安全衛生法 ウェブサイト https://www.mhlw.go.jp
- 【2】化学物質審查規制法(化審法)https://www.env.go.jp
- 【3】化学物質排出把握管理促進法(PRTR法) https://www.chemicoco.env.go.jp
- 【4】NITE化学物質総合情報提供システム (NITE-CHRIP) https://www.nite.go.jp/
- 【5】カメオケミカルズ公式サイト http://cameochemicals.noaa.gov/search/simple
- 【6】ChemlDplus、ウェブサイト http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp
- 【7】ECHA 欧州化学物質庁、ウェブサイト https://echa.europa.eu/
- 【8】eChemPortal OECD 化学物質情報グローバルポータル、ウェブサイトhttp://www.echemportal.org/echemportal/index? pageID=0&request_locale=en
- 【9】ERG 米国運輸省にょる緊急対応ガイドブック、ウェブサイトhttp://www.phmsa.dot.gov/hazmat/library/erg
- 【10】有害物質に関するドイツ GESTIS データベース、ウェブサイトhttp://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp
- 【11】HSDB 有害物質データバンク、ウェブサイト https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
- 【12】IARC 国際がん研究機関、ウェブサイト http://www.iarc.fr/
- 【14】Sigma-Aldrich、ウェブサイト https://www.sigmaaldrich.com/

免責事項:

本MSDSは、製品使用者の適切な専門的なトレーニングを受けた者にのみ製品安全情報を提供します。本MSDSの使用者は、本SDSの適用性について独自に判断しなければならない。本MSDSの著者は、本MSDSの使用によるいかなる傷害にも責任を負わない。