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Abstract: The pathogenesis of neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases involves the aggregation of 
denatured and misfolded nascent proteins. Consequently, many pharmacological approaches have been developed to prevent protein 
aggregation. 4-Phenylbutyric acid (4-PBA) is a chemical chaperone that shows potential as a candidate drug for the treatment of 
neurodegenerative diseases. The main actions of chemical chaperones are the amelioration of unfolded proteins and the suppression 
of their aggregation, which result in protective effects against endoplasmic reticulum stress-induced neuronal cell death. Furthermore, 
4-PBA exhibits inhibitory activity against histone deacetylases (HDACs). However, owing to the problematically high doses of 
4-PBA currently required for therapeutic efficacy, the optimization of 4-PBA is crucial for its effective medicinal application. In the 
present review, we summarize the recent advances in research on the basic actions of 4-PBA and its derivatives. We also discuss 
whether these compounds could be viable therapeutic agents against neurodegenerative diseases.  
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1. Introduction 

The accumulation of aggregated proteins is a common 

feature in the pathogenesis of neurodegenerative 

diseases. Mutated genes code different amino acids, 

resulting in protein structures different from those of 

normal proteins. In general, a protein needs to be 

folded to work properly. Unfolded proteins are folded 

through the action of molecular chaperones such as 

heat shock proteins (HSPs). If a protein is not formed 

properly, the ubiquitin–proteasome system induces its 

selective degradation with the 26S proteasome using 
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mitochondrial ATP, which is vital for selective 

degradation, and thus for the survival of cells.  

Disruption of the protein degradation system causes 

stagnation of ubiquitinated proteins, which results in 

the accumulation of aggregated unfolded proteins. 

These insoluble proteins constitute inclusion bodies in 

neurodegenerative diseases. Thus, abnormal proteins 

are thought to be involved in the pathogenesis of 

neurodegenerative diseases (Fig. 1). From a 

therapeutic point of view, the prevention of protein 

aggregation is critical, and recent studies have shown 

that anti-aggregation molecules may help to prevent 

aggregation of neurodegenerative diseases-related 

proteins.  
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Fig. 1  Molecular mechanisms of neurodegenerative disease. 
 

4-Phenylbutyric acid (4-PBA) is a 

small-molecular-weight fatty acid with a terminal 

aromatic group, and its sodium salt (sodium 4-phenyl 

butyrate) has been used for the treatment of urea cycle 

disorders [1]. This molecule is also used for the 

treatment of sickle cell diseases and thalassemia 

owing to its ability to activate β-globin transcription 

[2]. Moreover, 4-PBA is employed as an orally 

bioavailable agent for the treatment of spinal muscular 

atrophy (SMA) [3] and tumors [4]. Recently, the use 

of 4-PBA as a novel therapeutic agent for type 2 

diabetes has been reported [5], and it has also been 

used as a treatment for familial hypercholesterolemia 

[6]. 

4-PBA has two main modes of action: as a chemical 

chaperone, and as a histone deacetylase (HDAC) 

inhibitor. Many studies have been published on the 

effects of 4-PBA in various biological models, and 

recently, the therapeutic effects of 4-PBA have been 

thoroughly classified and reviewed by Kolb et al. [7]. 

2. 4-PBA as a Chemical Chaperone 

Molecular chaperones such as HSPs provide 

cellular protection by preventing nascent proteins 

from misfolding, and reducing protein-protein 

aggregation. For example, Hsp70 is an intracellular 

chaperone that affects the amounts of misfolded and 

aggregated -synuclein (-syn) both in vivo and in 

vitro [8]. The aggregation of nascent or denatured 

proteins is considered to be a major factor in the 

pathogenesis of neurodegenerative diseases, as this 

aggregation can induce endoplasmic reticulum (ER) 

stress. For further details, the reader is directed to 

Hosoi et al. (2015), who thoroughly reviewed the 

relationship between Alzheimer’s disease (AD) and 

endoplasmic reticulum stress [9]. 

Chemical chaperones mimic the functions of 

intracellular molecular chaperones. 4-PBA appears to 

stabilize nascent proteins and HSPs, which are known 

to interact with mutated or unfolded proteins (Fig. 2). 

4-PBA has been reported to restore mutated cystic 

fibrosis transmembrane conductance regulator (CFTR), 

a phenomenon that may be exploited for therapeutic 

effect [10-13]. Furthermore, mutant -antitrypsin 

(-ATZ), which is retained in the ER of liver cells 

rather than being secreted into the blood and body 

fluids [14], can be folded by 4-PBA and may 

consequently be secreted. Moreover, 4-PBA exhibits 
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Fig. 2  4-PBA working as a molecular chaperone. 
 

chemical chaperone activity, and has been reported to 

prevent the aggregation of denatured -lactalbumin 

and bovine serum albumin (BSA) in vitro [15]. 4-PBA 

has also been reported to restore normal expression 

levels of Parkin-associated endothelin receptor-like 

receptor (Pael-R), which is one of the genes 

responsible for Parkinson’s disease (PD), and to 

suppress Pael-R-induced ER stress [16-18]. Thus, 

4-PBA is an effective compound against a wide 

variety of aggregated-protein conditions. Furthermore, 

4-PBA ameliorates palmitate-induced inhibition of 

glucose-stimulated insulin secretion (GSIS) [19], and 

has been reported to improve cataracts caused by 

mutant γ D-crystallin in cultured cells [20]. 

3. 4-PBA as an HDAC Inhibitor 

In general, histone acetyltransferases (HATs) and 

HDACs catalyze the acetylation and deacetylation, 

respectively, of histones. Epigenetic gene expression 

is regulated by the balance of HATs and HDACs, and 

by the methylation of DNA. The acetylation of 

histones promotes their partial loosening, so that 

transcription factors can easily bind to the gene. This 

induces epigenetic transcription (which regulates 

cellular homeostasis) and the expression of a variety 

of genes. In many types of cancer, related proteins are 

constitutively overexpressed, and HDACs are thought 

to remediate this aberrant gene expression to its 

correct state. Thus, HDAC inhibitors have been 

developed as anticancer agents. These studies have 

already been summarized in several other excellent 

reviews [21-23]. 

Unlike cancer, neurodegenerative conditions are 

accompanied by collapsed homeostasis and declined 

turnover of proteins. However, both cancer and 

neurodegenerative diseases are accompanied by 

abnormal gene expression. In general, 

neurodegenerative diseases are presumed to be caused, 

or at least exacerbated, by the low acetylation of 

histones. Thus, HDAC inhibitors have recently 

become thought of as candidate therapeutic agents to 

improve the balance of gene expression, as reviewed 

by Das et al. (2016) [24]. 

Eighteen HDACs have been identified and 

classified into four categories by their homology, as 

reviewed by Zhang et al. (2015) [25]. Crystal structure 

analysis of several types of HDACs has been 

performed to facilitate the discovery of HDAC 
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inhibitors [26-28]. To function as a catalytic enzyme, 

almost all HDACs require a metal ion, except for class 

III HDACs. 4-PBA is thought to chelate zinc ions, 

forming a complex that subsequently acts as an 

HDAC inhibitor. Butyrate also acts via the same 

mechanism as 4-PBA owing to its similar structure, as 

short chain fatty acids are involved in both [29]. 

Butyrate inhibits many HDACs, except for HDAC6, 

HDAC10, and class III HDACs. Furthermore, 

Valproic acid, a similar compound, is thought to 

enhance the anticonvulsant activity of GABA in 

suppressive synapses [30, 31]. 

HDACs have been reported to act upon the central 

nervous system in disorder models, and the inhibitory 

effects of HDACs are likely to play an important role 

in the treatment of mood disorders. For example, 

4-PBA is reported to ameliorate cognitive deficit and 

reduction of tau pathologies in an AD mouse model 

[32]. Moreover, systemic administration of 4-PBA has 

been reported to reinstate fear learning in the Tg2576 

AD mouse model [33], and 4-PBA has been shown to 

exert significant neuroprotective effects in a PD 

mouse model [34-36]. It has also been reported that 

4-PBA has a neuroprotective effect in the N171-82Q 

transgenic mouse model of Huntington’s diseases 

(HD) [37]. Administration of 4-PBA increased brain 

histone acetylation and decreased histone methylation 

levels, as assessed by both immunocytochemistry and 

Western blots. Moreover, 4-PBA was shown to 

significantly extended survival and improve clinical 

and neuropathological phenotypes in G93A transgenic 

amyotrophic lateral sclerosis (ALS) mice [38], and the 

effectiveness of 4-PBA against SMA has been 

frequently reported [3, 39, 40]. Improvement of these 

conditions is suggested to be mediated by the 

inhibitory activity and/or chemical chaperone activity 

of HDAC inhibitors [3, 38-40]. 

4. Development of 4-PBA in our Research 

4-PBA protects against cerebral ischemic injury and 

ER stress-induced neuronal death [41], which 

indicates its chemical chaperone activity. It also 

prevents the aggregation of reduced -lactalbumin 

with denatured BSA [15]. 

Unfortunately, 4-PBA is required in high doses to 

prevent protein aggregation. Consequently, in order to 

improve the efficiency of the chemical chaperone 

activity of 4-PBA, we investigated the 

structure–activity relationship (SAR) in 4-PBA 

analogs with different numbers of carbon atoms in the 

fatty acid chain (Fig. 3) [42]. The aggregation 

inhibitory effect in vitro increased relative to the 

number of carbons from three to six. The longer 

carbon chain molecules were effective against ER 

stress-induced cell death by tunicamycin in SH-SY5Y 

neuroblastoma cells, whereas 3-phenylpropanoic acid 

(3-PPA) and 4-PBA only protected against 

Pael-R-induced cell death. Moreover, localization of 

the overexpressed Pael-R was shifted from the ER to 

the cytoplasmic membrane by 3-PPA and 4-PBA. 

As another strategy to optimize 4-PBA, we 

investigated synthetic methoxy-substituted 4-PBA 

derivatives (Fig. 4) [43]. 4-(4-Methoxyphenyl) 

butanoic acid (4-MPB) showed protective effects 

against ER stress-induced neuronal cell death. 

However, further optimization is necessary for clinical 

use, since the required dose of 4-MPB was not 

significantly smaller than that of 4-PBA. 

It is important to determine whether it is the 

chemical chaperone or HDAC inhibitor activity of 

4-PBA that reduces ER stress-induced cell death. We 

showed that 4-PBA protects against neuronal cell 

death by primarily acting as a chemical chaperone 

rather than as an HDAC inhibitor using three simple 

4-(p-substituted  phenyl)  butyric  acids  [44]. 

4-(4-Aminophenyl) butanoic acid (4-APB) exhibited 

high affinity an HDAC7/4-PBA-derivative binding 

model. In fact, 4-APB showed a stronger HDAC 

inhibitory effect than the other derivatives. However, 

4-APB did not exhibit protective effects against ER 

stress-induced cell death or chemical chaperone 

activity in vitro, whereas 4-MPB exhibited slightly 
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Fig. 3  Activity comparison of 4-PBA derivatives with different numbers of carbons in the fatty acid chain. (A) 4-PBA 
derivatives. (B) The results of our study (Ref. [42]). Relative efficacy is indicated by the number of plus (+) symbols. 
 

 
Fig. 4  Activity comparison of the 4-PBA derivatives replaced with the para position. (A) 4-PBA derivatives replaced with 
the para position. (B) The results of our study (Ref. [44]). Relative evaluation using the number of plus (+) symbols. 
 

stronger chemical chaperone activity than that of 

4-PBA. Conversely, 4-MPB exhibited weaker HDAC 

inhibitory activity than that of 4-PBA. These data 

suggest that the inhibitory effect of 4-PBA on cell 

death is due to its aggregation-inhibitory activity (i.e., 

in vitro chemical chaperon activity) (Fig. 4). 

We  are  currently  conducting  drug  discovery 

research focusing on the chemical chaperone activity 

of the benzene ring of 4-PBA, which can interact with 

other benzene rings through π–π interactions (or 
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Fig. 5  Possible interactions of benzene rings. 
 

 
Fig. 6  Hypothetical mechanism of 4-PBA against cell death. 
 

stacking). The possible interactions are shown in Fig. 

5. The electron cloud area may be directly related to 

the anti-aggregation activity. This model appears to 

require a large amount of 4-PBA for the assembly of 

denatured proteins. We assume that the electron 

clouds of the benzene rings interact with the 

aggregates of denatured proteins. Thus, we attempted 

to expand the electron cloud area by synthesizing 

naphthalene-based 4-PBA analogs [45]. The chemical 

chaperone activity increased relative to that of 4-PBA. 

However, the synthesis of these analogs entailed the 

use of highly toxic reagents, so further work on 

4-PBA analogs with different frameworks to 

naphthalene is underway in our group. 

5. Conclusions 

4-PBA is a biologically active small molecule that 

has already been demonstrated to be safe, and is 

approved by the FDA. However, further study is 

required in order to fully understand this interesting 

compound. We believe that the main effects of 4-PBA 

are its protein-aggregation inhibitory activity and its 

HDAC inhibitory activity (Fig. 6). Histones are 

thought to be over-deacetylated in neurodegenerative 

conditions; therefore, the control of deacetylation is a 

promising therapeutic strategy for their treatment. 
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