니트로 글리세린

니트로 글리세린
니트로 글리세린 구조식 이미지
카스 번호:
55-63-0
한글명:
니트로 글리세린
동의어(한글):
니트로글리세린;나이트로글리세린;나이트로글리콜;질산그리세롤;나이트로글리세린,1%미만의나이트로글리세린이함유된알코올용액;프로판-1,2,3-트라일트라이나이트레이트;1,2,3-프로페인트라이올 트라이나이트레이트;1,2,3-프로페인트라이올, 1,2,3-트라이나이트레이트;1,2,3-프로페인트라이올, 트라이나이트레이트;1,3-다이나이트옥시프로판-2-일 나이트레이트;글리세롤 트라이나이트레이트;글리세린 트라이나이트레이트;글리세릴 트라이나이트레이트;나이트로글리세린, 1% 미만의 나이트로글리세린이 함유된 알코올 용액
상품명:
Nitroglycerin
동의어(영문):
Glyceryl trinitrate;NITROGLYCERINE;NTG;GTN;TNG;Nitrolingual;Diluted Nitroglycerin;Nitrol;Tridil;Anginine
CBNumber:
CB2145318
분자식:
C3H5N3O9
포뮬러 무게:
227.09
MOL 파일:
55-63-0.mol
MSDS 파일:
SDS

니트로 글리세린 속성

녹는점
2.8°; mp 13.5°
끓는 점
368.78°C (rough estimate)
밀도
d1515 1.599; d44 1.6144; d415 1.6009; d425 1.5918
굴절률
nD15 1.474
인화점
12°C
저장 조건
-20°C
용해도
아세톤 및 무수 에탄올과 혼합 가능
물리적 상태
액체
수용성
1.25g/L(25℃)
Dielectric constant
19.0(20℃)
노출 한도
TLV-TWA skin 0.05 ppm (0.5 mg/m3) (ACGIH), 0.2 ppm (MSHA, OSHA, and NIOSH).
BCS Class
1
CAS 데이터베이스
55-63-0(CAS DataBase Reference)
NIST
1,2,3-Propanetriol, trinitrate(55-63-0)
EPA
Nitroglycerin (55-63-0)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 E,T+,N,Xn,T
위험 카페고리 넘버 11-51/53-33-26/27/28-3-36-20/21/22-23/24/25
안전지침서 7-16-61-45-36/37-35-33-26
유엔번호(UN No.) 1993
WGK 독일 3
위험 등급 1.1A
포장분류 I
HS 번호 2920900002
유해 물질 데이터 55-63-0(Hazardous Substances Data)
독성 LD50 oral in rabbit: 1607mg/kg
IDLA 75 mg/m3
기존화학 물질 KE-25998
그림문자(GHS): GHS hazard pictograms
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 GHS hazard pictograms P264, P270, P301+P312, P330, P501
H311 피부와 접촉하면 유독함 급성 독성 물질 - 경피 구분 3 위험 GHS hazard pictograms P280, P302+P352, P312, P322, P361,P363, P405, P501
예방조치문구:
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P270 이 제품을 사용할 때에는 먹거나, 마시거나 흡연하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P301+P312 삼켜서 불편함을 느끼면 의료기관(의사)의 진찰을 받으시오.
NFPA 704
3
2 4

니트로 글리세린 MSDS


1,2,3-Propanetriol trinitrate

니트로 글리세린 C화학적 특성, 용도, 생산

개요

Nitroglycerin is an oily, poisonous, clear to pale yellow, explosive liquid.Nitroglycerin is made by nitrating glycerol. Early industrial processes used a batch process in which glycerol was added to a mixture with approximately equal volumes of nitric acid and sulfuric acid.The sulfuric acid serves to ionize the nitric acid and removes water formed in the nitration process.

화학적 성질

Nitroglycerin is a pale yellow liquid or crystalline solid (below 13℃).

역사

It was first prepared in 1846 by the Italian chemist Ascanio Sobrero (1812–1888), who nitrated glycerol using a mixture of nitric acid and sulfuric acid. Sobrero, who was injured in an explosion doing his research, realized the compound’s danger and abandoned work on nitroglycerin. Twenty years after Sobrero’s discovery, Alfred Nobel (1833–1896) developed its use commercially. Nobel mixed nitroglycerin with other substances, searching for a safe way to transport it and make it less sensitive to heat and pressure.
nitroglycerin when it was first marketed,and Nobel continued to experiment with methods to make nitroglycerin safer.One of these was mixing nitroglycerin with materials to make a solid form of nitroglycerin. Nobel discovered that when nitroglycerin was mixed with a silica-based diatomaceous earth material called kieselguhr,a relatively stable product resulted.The mixture produced a paste that Nobel could pack into cardboard tubes;these could then be inserted into holes drilled into rock structures and detonated.In 1867,Nobel patented his mixture and called it dynamite,a name derived from the Greek word dunamis, meaning power.Nobel also perfected a blasting cap made from mercury fulminate (Hg(ONC)2) and potassium chlorate (KClO3) to detonate the nitroglycerin.

용도

Nitroglycerin has medicinal use as a vasodilator. The main medical use of nitroglycerin is to treat angina pectoris. Nitroglycerin was first used to treat this condition in the late 19th century. It is prescribed today in various forms (tablet, ointment, patches, and injection) for patients who suffer from angina pectoris. Nitroglycerin is marketed under various trade names: Nitro-Dur, Nitrostat, Nitrospan, Nitro-Bid, and Tridil. When used in medications, the name glyceryl trinitrate is often used instead of nitroglycerin.

생산 방법

Nitroglycerin is made by nitrating glycerol.Early industrial processes used a batch processin which glycerol was added to a mixture with approximately equal volumes of nitric acidand sulfuric acid.The sulfuric acid serves to ionize the nitric acid and removes water formedin the nitration process.Removing the water formed in nitration increases the yield of nitroglycerin.Acids and water must be removed from the desired nitroglycerin through a washingprocess. The production of nitroglycerin is highly exothermic,and it is important to keepthe temperature below room temperature to prevent an explosion. Early production methodsused cooling coils in the nitration vessels to regulate the temperature.During the latter halfof the 20th century, safer continuous production methods replaced batch processes.In thesemethods much smaller reactors are required,as glycerol is reacted with the acids.

Indications

Nitroglycerin (also isosorbide nitrate) relaxes isolated strips of human corpus cavernosum. Its mechanism involves the stimulation of guanylate cyclase. Clinically, nitroglycerin has been of limited use in the treatment of ED.

정의

ChEBI: A nitroglycerol that is glycerol in which the hydrogen atoms of all three hydroxy groups are replaced by nitro groups. It acts as a prodrug, releasing nitric oxide to open blood vessels and so alleviate heart pain.

일반 설명

Colorless to pale-yellow, viscous liquid or solid (below 56°F). (Note: An explosive ingredient in dynamite (20-40%) with ethylene glycol dinitrate (80-60%).).

공기와 물의 반응

Highly flammable.

반응 프로필

Nitroalkanes, such as NITROGLYCERIN, range from slight to strong oxidizing agents. If mixed with reducing agents, including hydrides, sulfides and nitrides, they may begin a vigorous reaction that culminates in a detonation. Nitroalkanes are milder oxidizing agents, but still react violently with reducing agents at higher temperature and pressures. Nitroalkanes react with inorganic bases to form explosive salts. The presence of metal oxides increases the thermal sensitivity of nitroalkanes. Nitroalkanes with more than one nitro group are generally explosive. Nitroalkanes are insoluble in water. Flammable/combustible material. May be ignited by heat, sparks or flames. Nitroglycerin is incompatible with the following: Heat, ozone, shock, acids. Note: An OSHA Class A Explosive (1910.109). .

위험도

Severe explosion risk, highly sensitive to shock and heat. Toxic by ingestion, inhalation, and skin absorption. Toxic by skin absorption. Vasodilator.

건강위험

Severe acute poisoning may result from ingestion of nitroglycerine or inhalation of its dust. The acute toxic symptoms include headache, nausea, vomiting, abdominal pain, tremor, dyspnea, paralysis, and convulsions. In addition, methemoglobinemia and cyanosis may occur. Ingestion of a relatively smallamount, 1.5-2.0 g, could be fatal to humans. Inhalation of its vapors or dust at 0.3 mg/m3 concentration in air produced an immediate fall in blood pressure and headache in human volunteers (ACGIH 1986). Chronic poisoning may produce headache and hallucination.
LD50 value, oral (rats): 105 mg/kg.

화재위험

HIGHLY FLAMMABLE: Will be easily ignited by heat, sparks or flames. Vapors may form explosive mixtures with air. Vapors may travel to source of ignition and flash back. Most vapors are heavier than air. They will spread along ground and collect in low or confined areas (sewers, basements, tanks). Vapor explosion hazard indoors, outdoors or in sewers. Runoff to sewer may create fire or explosion hazard. Containers may explode when heated. Many liquids are lighter than water.

색상 색인 번호

Nitroglycerin is an explosive agent contained in dynamite and an antianginal and vasodilator treatment available in systemic and topical forms. It is a well known irritant agent in dynamite manufacture. It can also cause allergic reactions in employees of explosives manufacturers and in the pharmaceutical industry. Transdermal systems are the main source of iatrogenic sensitization. Nitroglycerin can cross-react with isosorbide dinitrate.

Mechanism of action

Nitroglycerine reduces the load on the heart by dilating peripheral veins, reducing the myocardial need for oxygen, and facilitating redistribution of coronary blood flow in the region of the myocardium with reduced blood flow.

Clinical Use

Nitroglycerin is used extensively as an explosive in dynamite.A solution of the ester, if spilled or allowed to evaporate,will leave a residue of nitroglycerin. To prevent anexplosion of the residue, the ester must be decomposed byadding alkali. Even so, the material dispensed is so dilutethat the risk of explosions does not exist. It has a strong vasodilatingaction and, because it is absorbed through theskin, is prone to cause headaches among workers associatedwith its manufacture. This transdermal penetration is whynitroglycerin is useful in a patch formulation. In medicine, ithas the action typical of nitrites, but its action develops moreslowly and is of longer duration. Of all the known coronaryvasodilatory drugs, nitroglycerin is the only one capable ofstimulating the production of coronary collateral circulationand the only one able to prevent experimental myocardialinfarction by coronary occlusion.

부작용

Vascular headache, postural hypotension, and reflex tachycardia are common side effects of organic nitrate therapy. Fortunately, tolerance to nitrate-induced headache develops after a few days of therapy. Postural hypotension and tachycardia can be minimized by proper dosage adjustment and by instructing the patient to sit down when taking rapidly acting preparations. An effective dose of nitrate usually produces a fall in upright systolic blood pressure of 10 mm Hg and a reflex rise in heart rate of 10 beats per minute. Larger changes than these should be avoided, because a reduction in myocardial perfusion and an increase in cardiac oxygen requirements may actually exacerbate the angina.
Since nitrite ions oxidize the iron atoms of hemoglobin and convert it to methemoglobin, there may be a loss in oxygen delivery to tissues. While methemoglobinemia does not follow therapeutic doses of organic nitrates, it can be observed after overdosage or accidental poisoning.

Safety Profile

Human poison by an unspecified route. Poison experimentally by ingestion, intraperitoneal, subcutaneous, and intravenous routes. An experimental teratogen. Other experimental reproductive effects. A skin irritant. Questionable carcinogen with experimental tumorigenic data. Mutation data reported. It can cause respiratory difficulties and death due to respiratory paralysis by ingestion. The acute symptoms of nitroglycerin poisoning are headaches, nausea, vomiting, abdominal cramps, convulsions, methemoglobinemia, circulatory collapse and reduced blood pressure, excitement, vertigo, fainting, respiratory rales, and cyanosis. Toxic effects may occur by ingestion, inhalation of dust, or absorption through intact skin. Human systemic effects by intravenous route: encephalitis, miosis, corneal damage. Used as a vasodilator and as an explosive. A very dangerous fire hazard when exposed to heat, flame, or by spontaneous chemical reaction. A severe explosion hazard when shocked or exposed to 03 , heat, or flame. Nitroglycerin is a powerful explosive, very sensitive to mechanical shock, heat, or UV radiation. Small quantities of it can readily be detonated by a hammer blow on a hard surface, particularly when it has been absorbed in filter paper. It explodes when heated to 215°C. Frozen nitroglycerin is somewhat less sensitive than the liquid. However, a half-thawed or partially thawed mixture is more sensitive than either one. When heated to decomposition it emits toxic fumes of NOx.

잠재적 노출

An explosive ingredient in dynamite (20-40%) with ethylene glycol dinitrate (80-60%). It is also used in making other explosives, rocket propellants; and medicine (vasodilator).

신진 대사

Nitroglycerin is a lipid-soluble substance that is rapidly absorbed across the sublingual or buccal mucosa. Its onset of action occurs within 2 to 5 minutes, with maximal effects observed at 3 to 10 minutes. Little residual activity remains 20 to 30 minutes after sublingual administration. The plasma half-life of nitroglycerin, given sublingually or by spray, is estimated to be 1 to 3 minutes. Nitroglycerin and other organic nitrate esters undergo first-pass metabolism and are rapidly metabolized in the liver by the enzyme glutathione organic nitrate reductase.

운송 방법

UN1204 Nitroglycerin solution in alcohol with not .1% nitroglycerin, Hazard Class: 3; Labels: 3-Flammable liquid. UN3064 Nitroglycerin, solution in alcohol with .1% but not .5% nitroglycerin, Hazard Class: 3; Labels: 3-Flammable liquid. UN0143 Nitroglycerin, desensitized with not ,40% nonvolatile, water-insoluble phlegmatizer, by mass. It falls in Hazard Class 1.1D (subsidiary hazard: 6.1).

비 호환성

Heat, ozone, shock, acids. An OSHA Class A Explosive (1910.109). Heating may cause violent combustion or explosion. May explosively decompose on shock, friction, or concussion. Reacts with ozone causing explosion hazard.

폐기물 처리

Do not wash into sewer. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.

니트로 글리세린 준비 용품 및 원자재

원자재

준비 용품


니트로 글리세린 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved