ChemicalBook--->CAS DataBase List--->187164-19-8

187164-19-8

187164-19-8 Structure

187164-19-8 Structure
IdentificationBack Directory
[Name]

Luliconazole
[CAS]

187164-19-8
[Synonyms]

C13478
Lulicon
NND 502
Luliconazole
4-(2,4-Dichlorophenyl)-1,3-dithiolan-2-ylidene-1-imidazolylacetonitrile
(2E)-2-[(4R)-4-(2,4-Dichlorophenyl)-1,3-dithiolan-2-ylidene]-2-imidazol-1-ylacetonitrile
1H-Imidazole-1-acetonitrile,a-[(4R)-4-(2,4-dichlorophenyl)-1,3-dithiolan-2-ylidene]-,(aE)-
[EINECS(EC#)]

247-960-9
[Molecular Formula]

C14H9Cl2N3S2
[MDL Number]

MFCD00953915
[MOL File]

187164-19-8.mol
[Molecular Weight]

354.28
Chemical PropertiesBack Directory
[Melting point ]

152 °C
[Boiling point ]

499.1±55.0 °C(Predicted)
[density ]

1.52±0.1 g/cm3(Predicted)
[storage temp. ]

Sealed in dry,Store in freezer, under -20°C
[solubility ]

Chloroform (Slightly), Ethyl Acetate (Slightly)
[form ]

Solid
[pka]

3.76±0.10(Predicted)
[color ]

White to Off-White
[Stability:]

Light Sensitive
[CAS DataBase Reference]

187164-19-8
Safety DataBack Directory
[HS Code ]

2933.29.2000
Hazard InformationBack Directory
[Description]

Luliconazole is a member of the imidazole class of antifungal agents, with specific utility as a dermatological antimycotic drug. It was launched in Japan as a topical agent for the treatment of athlete’s foot. Luliconazole is an optically active drug with (R)-configuration at its chiral center. It is structurally related to lanoconazole, which has been marketed as a racemic mixture since 1994. As with other azole antifungal drugs, the mechanism of action of luliconazole is the inhibition of sterol 14-a-demethylase, and subsequently, inhibition of ergosterol biosynthesis. The in vivo activity of luliconazole against dermatophytes has been evaluated in the guinea pig model of tinea pedis. In this study, a 1% topical solution of luliconazole, administered once daily for seven days, achieved complete mycologic cure. Additionally, there were no occurrences of relapse for up to 16 weeks after the treatment. No data is currently available on the clinical efficacy of luliconazole. The chemical synthesis of luliconazole involves the condensation of 1-(cyanomethyl)imidazole with carbon disulfide to produce a dithioate intermediate, and subsequent alkylation with either the mesylate derivative of (S′)-1-(2,4-dichlorophenyl)-2-bromoethanol or the bis-mesylate derivative of (S′)-1-(2,4-dichlorophenyl)ethane-1,2-diol. .
[Originator]

Nihon Nohyaku (Japan)
[Definition]

ChEBI:Luliconazole is a dichlorobenzene.
[Brand name]

Lulicon
[Synthesis]

Synthesis of luliconazole started with diol 77, prepared according to literature procedure in 98%ee which was activated by converting to dimesylate 78 in 99% yield and coupled to dipotassium enolate 80, prepared in situ by reacting cyano methylimidazole 79 with carbon disulfide, to give luliconazole (XI), 99% ee in 48% yield.

Synthesis_187164-19-8

[storage]

Store at -20°C
[Mode of action]

The mechanism of action of luliconazole is as a Cytochrome P450 2C19 Inhibitor.
Questions And AnswerBack Directory
[Outline]

Luliconazole is a novel topical antifungal imidazole, and is a kind of analogue of lanoconazole. It can interfere with the fungal cell wall synthesis and fungal growth by decreasing levels of ergosterol via inhibiting lanosterol demethylase activity. Besides being used for the treatment of athlete's foot, jock itch and ringworm, it has also been developed for onychomycosis (nail fungus) treatment and has now also entered the clinical stage phase III. This product was originally developed by the Japanese pesticide Corporation (NihonNohyaku Co., Ltd.). In November 2013, the FDA has approved a 1% luliconazole cream for entering into market for topical treatment of interdigital athlete's foot, jock itch and ringworm with the trade name being Luzu and first entered into market in North America. As early as April 2005, luliconazole had been approved to enter into market in Japan under the trade name Lulicon. In January 2010 and June 2012, it was approved for marketing in India and China, respectively.
In 1997, Pesticide Co., Ltd. of Japan has initially get access to the worldwide patent of luliconazole as antifungal agents (WO 1997002821 A2) and have protected in their preparation and application; thereafter, it had also applied for a European patent (EP0839035 A2), Chinese patent (CN 1194582 A) and U.S. Patent (US5900488A). In addition, WO 2007102241, US 8058303, and other patents have also been applied for protection on the drug's pharmaceutical compositions and dosage forms.
[Synthetic method]

The first method is using BH3/THF and a kind of chiral catalyst for stereoselectively reducing the starting material 1 to give the intermediate 2 which yields the corresponding mesylate intermediate (3), substance 3 and intermediate 5 is cyclized into luliconazole in the presence of potassium hydroxide and DMSO; second method is based on using chiral compound 6 as starting materials, 6 undergoes mesylate esterification to yield active intermediate 7,7 undergoes condensation reaction with intermediate 5 to get luliconazole. The synthesis of Intermediate 5 is through putting 2-(1-imidazolyl)-acetonitrile and CS2 into condensation under basic conditions.
synthesis route of luliconazole
Figure 1 is a synthesis route of luliconazole
[Uses]

It can be used for the following fungal infections:
Ringworm: athlete's foot, ringworm, jock itch;
Candida infections: disease fingers erosion, intertrigo; vitiligo.
[Ringworm]

Currently, ringworm treatment drugs include two major categories: first, propylene amine drugs, such as terbinafine, Butenafine and naftifine. They exert their bactericidal effects through inhibiting squalene cyclase, causing the lack of ergosterol and accumulation of squalene. The second category of imidazole (imidazoles) drugs: such as miconazole, econazole, clotrimazole, ketoconazole and bifonazole. They are a class of synthetic antifungal agent that can selectively inhibit the lanosterol 14α-demethylation activity of fungal cell, preventing the ergosterol synthesis of cell membrane, changing the cell membrane permeability, and resulting in the loss of important intracellular fungal material and causing fungal death. Imidazole antifungal agents are currently the most commonly used drugs in clinical treatment of ringworm with extensive clinical applications.
[Pharmacodynamics]

In vitro and in vivo studies have shown that luliconazole has broad-spectrum antifungal activity, with its minimum inhibitory concentration (MIC) being 0.12 to 2 mg/mL to Trichophyton (Trichophyton rubrum, Trichophyton mentagrophytes and tonsurans). Its anti-fungal effect is stronger than terbinafine, ketoconazole, miconazole, bifonazole and other commonly used drugs. Trichophyton rubrum is most sensitive to luliconazole. The MIC of Luliconazole to Candida albicans is 0.031~0.130μg/mL with the inhibitory effect being higher than that of terbinafine, Liranaftate, Butenafine, amorolfine and bifonazole, but less than that of ketoconazole, clotrimazole, neticonazole and miconazole. The MIC of Luliconazole on the important pathogens of seborrheic dermatitis, limiting Malassezia is very low, being 0.004~0.016 μg/mL with its inhibitory effect being not less but even stronger than ketoconazole.
In addition, luliconazole also have antifungal activity on filamentous fungi and yeast-like fungi with its strength being comparable as lanoconazole but higher than bifonazole and terbinafine, but being almost ineffective on Zygomycetes.
The above information is edited by the chemicalbook of Dai Xiongfeng.
Spectrum DetailBack Directory
[Spectrum Detail]

Luliconazole(187164-19-8)1HNMR
187164-19-8 suppliers list
Company Name: Anhui Yiao New Material Technology Co., Ltd
Tel: +86-199-55145978 +8619955145978 , +8619955145978
Website: www.chemicalbook.com/manufacturer/yiao%20new%20material%20technology%20-25052/
Company Name: Hebei Yanxi Chemical Co., Ltd.
Tel: +8617531190177 , +8617531190177
Website: www.chemicalbook.com/manufacturer/hebei-yanxi-chemical-283/
Company Name: Beijing Cooperate Pharmaceutical Co.,Ltd
Tel: 010-60279497
Website: http://www.cooperate-pharm.com
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: +86-0371-55170693 +86-19937530512 , +86-19937530512
Website: https://www.tianfuchem.com/
Company Name: Hangzhou FandaChem Co.,Ltd.
Tel: 008657128800458; +8615858145714 , +8615858145714
Website: http://www.fandachem.com
Company Name: career henan chemical co
Tel: +86-0371-86658258
Website: https://www.coreychem.com/
Company Name: TianYuan Pharmaceutical CO.,LTD
Tel: +86-755-23284190 13684996853
Website: www.tianpharm.com
Company Name: Biochempartner
Tel: 0086-13720134139
Website: www.biochempartner.com
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 18871490254
Website: www.hubeijusheng.com
Company Name: Xiamen AmoyChem Co., Ltd
Tel: +86-592-6051114 +8618959220845 , +8618959220845
Website: http://www.amoychem.com/
Company Name: Chongqing Chemdad Co., Ltd
Tel: +86-023-61398051 +8613650506873 , +8613650506873
Website: http://www.chemdad.com/
Company Name: CONIER CHEM AND PHARMA LIMITED
Tel: +8618523575427 , +8618523575427
Website: http://www.conier.com/
Company Name: Shaanxi Dideu Medichem Co. Ltd
Tel: 18192627656 , 18192627656
Website: https://www.chemicalbook.com/manufacturer/shaanxi-dideu-medichem-219/
Company Name: Tianjin Xinshengjiahe Science & Technology Development Co,.Ltd
Tel: +86-86-22-87899925 +86-8618522618860 , +86-8618522618860
Website: http://www.xinshengjiahe.com/en/
Company Name: SIMAGCHEM CORP
Tel: +86-13806087780 , +86-13806087780
Website: http://www.simagchem.com/
Company Name: TargetMol Chemicals Inc.
Tel: +1-781-999-5354 +1-00000000000 , +1-00000000000
Website: https://www.targetmol.com/
Company Name: Hubei Ipure Biology Co., Ltd
Tel: +8613367258412 , +8613367258412
Website: www.ipurechemical.com
Company Name: Longyan Tianhua Biological Technology Co., Ltd
Tel: 0086 18039857276 18039857276 , 18039857276
Website: tianhuaapi.en.alibaba.com
Tags:187164-19-8 Related Product Information
10025-67-9 65277-42-1 149-74-6 84625-61-6 86386-73-4 628-87-5 22832-87-7 288-32-4 80-10-4 101827-46-7 137234-62-9 101530-10-3 140-29-4