ChemicalBook > Product Catalog >Organic Chemistry >Hydrocarbons and derivatives >Aromatic hydrocarbons >Naphthalene

Naphthalene

Naphthalene Suppliers list
Company Name: Yucheng Delong Auxiliary Co., Ltd
Tel: +8615165992233
Email: 15165992233@126.com
Products Intro: Product Name:Naphthalene
Purity:99% Package:50KG;USD
Company Name: Hebei Duling International Trade Co. LTD
Tel: +8618032673083
Email: sales05@hbduling.cn
Products Intro: Product Name:Naphthalene
CAS:91-20-3
Purity:99% Package:25kg*680 bags 25kg*1040 bags
Company Name: Wuhan Boyuan Import & Export Co., LTD
Tel: +86-15175982296 15175982296;
Email: Mike@whby-chem.com
Products Intro: Product Name:Naphthalene
CAS:91-20-3
Purity:99% Package:1KG;9USD
Company Name: Hebei Mojin Biotechnology Co., Ltd
Tel: +86-13288715578 +86-13231137666
Email: sales@hbmojin.com
Products Intro: Product Name:Naphthalene
CAS:91-20-3
Purity:99% Package:25KG
Company Name: Henan Bao Enluo International TradeCo.,LTD
Tel: +86-17331933971 +86-17331933971
Email: deasea125996@gmail.com
Products Intro: Product Name:Naphthalene
CAS:91-20-3
Purity:99% Package:1kg;100USD

Naphthalene manufacturers

  • Naphthalene
  • Naphthalene pictures
  • $0.00 / 25Kg/Bag
  • 2024-03-19
  • CAS:91-20-3
  • Min. Order: 1KG
  • Purity: 99%
  • Supply Ability: 500mt/year
  • Naphthalene
  • Naphthalene pictures
  • $9.00 / 1KG
  • 2024-01-08
  • CAS:91-20-3
  • Min. Order: 1KG
  • Purity: 99%
  • Supply Ability: 50000tons
  • Naphthalene
  • Naphthalene pictures
  • $100.00 / 1KG
  • 2023-12-26
  • CAS:91-20-3
  • Min. Order: 1KG
  • Purity: 99%
  • Supply Ability: g-kg-tons, free sample is available

Related articles

  • Introduction of Naphthalene
  • Naphthalene (CAS No: 91-20-3), the simplest bicyclic aromatic ring, is conventionally derived from coal tar. It is a white sol....
  • Feb 28,2022
  • Naphthalene - production and uses
  • The industrial importance of naphthalene dates from the latter half of the last century, owing mainly to the ease with which ....
  • Sep 3,2021
Naphthalene Chemical Properties
Melting point 80-82 °C (lit.)
Boiling point 218 °C (lit.)
density 0.99
vapor density 4.4 (vs air)
vapor pressure 0.03 mm Hg ( 25 °C)
refractive index 1.5821
Fp 174 °F
storage temp. Store below +30°C.
solubility methanol: soluble50mg/mL, clear, colorless
form Faint beige to brown to salmon red powder
color White to almost white
Specific Gravity1.145
Odorat 10.00 % in benzyl benzoate. pungent dry tarry
Odor Typepungent
explosive limit0.9-5.9%(V)
Water Solubility 30 mg/L (25 ºC)
Merck 14,6370
BRN 1421310
Henry's Law Constant5.64 at 25 °C (thermodynamic method-GC/UV spectrophotometry, Altschuh et al., 1999)
Exposure limitsTLV-TWA 10 ppm (~50 mg/m3) (ACGIH, MSHA, and OSHA); STEL 15 ppm (~75 mg/m3) (ACGIH); IDLH 500 ppm.
Dielectric constant2.5(85℃)
InChIKeyUFWIBTONFRDIAS-UHFFFAOYSA-N
LogP3.7 at 25℃
CAS DataBase Reference91-20-3(CAS DataBase Reference)
IARC2B (Vol. 82) 2002
NIST Chemistry ReferenceNaphthalene(91-20-3)
EPA Substance Registry SystemNaphthalene (91-20-3)
Safety Information
Hazard Codes Xn,N,F,T
Risk Statements 22-40-50/53-67-65-38-11-39/23/24/25-23/24/25-52/53-20
Safety Statements 36/37-46-60-61-62-45-16-7-33-25-9
RIDADR UN 1334 4.1/PG 3
WGK Germany 3
RTECS QJ0525000
Autoignition Temperature978 °F
TSCA Yes
HazardClass 4.1
PackingGroup III
HS Code 29029010
Hazardous Substances Data91-20-3(Hazardous Substances Data)
ToxicityAcute oral LD50 for guinea pigs 1,200 mg/kg, mice 533 mg/kg, rats 1,250 mg/kg (quoted, RTECS, 1985).
IDLA250 ppm
MSDS Information
ProviderLanguage
Naphthalene English
SigmaAldrich English
ACROS English
ALFA English
Naphthalene Usage And Synthesis
descriptionNaphthalene is a white solid chemical that vaporizes easily. It has a strong smell. You can sometimes smell naphthalene in the air or in water. Called white tar and tar camphor, naphthalene is used in mothballs and moth flakes. Petroleum and coal contain naphthalene.
Naphthalene ball
Naphthalene, the simplest of the fused or condensed ring hydrocarbon compounds composed of two benzene rings sharing two adjacent carbon atoms. Naphthalene is the most abundant single constituent of coal tar, a volatile product from the destructive distillation of coal, and is also formed in modern processes for the high-temperature cracking (breaking up of large molecules) of petroleum.
1-Methylnaphthalene and 2-methylnaphthalene are naphthalene-related compounds. 1-Methylnaphthalene is a clear liquid and 2-methylnaphthalene is a solid; both can be smelled in air and in water at very low concentrations. 1-Methylnaphthalene and 2-methylnaphthalene are used to make other chemicals such as dyes and resins. 2-Methylnaphthalene is also used to make vitamin K.
Chemical PropertiesNaphthalene is a crystalline, white, flammable, polycyclic aromatic hydrocarbon consisting of two fused benzene rings. It has a pungent odor and sublimes readily above its melting point; it has been traditionally used in moth balls and is responsible for the moth balls characteristic odor. Naphthalene is a natural component of fossil fuels and is the single most abundant component of coal tar, accounting for approximately 11% of dry coal tar.
Uses
  1. In industry, naphthalene is used to manufacture a plastic called polyvinyl chloride (PVC). In public restrooms, naphthalene can be found in toilet deodorant blocks. At home, naphthalene can be found in moth repellents.
  2. Naphthalene balls are extensively used as household preservative of woolen clothes and as a deodorant tablet for the toilets, urinals, bathrooms etc. These are manufactured from naphthalene flakes by a tabletmaking machine having its ball shape die.
  3. Naphthalene is an important hydrocarbon raw material and is primarily used to manufacture phthalic anhydride and polyvinyl chloride (PVC) plastics, but is also used in moth repellents and toilet deodorant blocks.
  4. Naphthalene was used in liquid-phase exfoliation of graphite in organic solvents for the production of graphene sheets. It was used in preparation of carbon-coated Si 70 Sn 30 nanoparticles.
  5. It was used as fluorescent probe to study the aggregation behavior of sodium cholate.
  6. It was used to investigate influence of added short chain linear and branched alcohols on the binding of 1:1 complex of naphthalene and β-cyclodextrin.
Health HazardMost of the data available on the toxic effects of naphthalene have been derived from animal studies conducted either in vivo or with in vitro preparations.
Rats and mice breathing naphthalene vapors daily for a lifetime had irritated noses and nose tumors and irritated lungs. Some female mice had lung tumors. Some animals got cloudy eyes after ingesting it.
It is not clear if naphthalene causes reproductive problems in animals. Although there is no direct data showing that naphthalene can cause cancer in people, naphthalene exposure can lead to cancer in animals.
Exposure to large amounts of naphthalene may damage or destroy red blood cells, a condition called hemolytic anemia. Symptoms of hemolytic anemia are feeling very tired or restless, lack of appetite, and pale skin. Exposure to large amounts of naphthalene may also cause upset stomach, diarrhea, blood in the urine,and yellow-colored skin. Very young children and unborn children are at higher risk if they are exposed to naphthalene, especially if they ingest the chemical. Some infants have become ill when they were close to clothing or blankets stored in naphthalene mothballs.
ToxicityNaphthalene is a white solid substance with a strong smell. Poisoning from naphthalene destroys or changes red blood cells so they cannot carry oxygen. This can cause organ damage.
In humans, naphthalene is broken down to alpha-naphthol, which is linked to the development of hemolytic anemia. Kidney and liver damage may also occur. Alpha-naphthol and other metabolites are excreted in urine.
In animals, naphthalene breaks down into other compounds including alpha-naphthol, which may affect the lungs and eyes. Naphthalene was found in the milk of exposed cows, but the residues disappeared quickly after the cows were no longer exposed. Nearly all the naphthalene was broken down into other compounds and excreted in their urine.
DescriptionNaphthalene occurs as transparent prismatic plates also available as white scales, powder balls, or cakes with a characteristic mothball or strong coal tar and aromatic odour. It is sparingly soluble in water but soluble in methanol/ethanol and very soluble in ether. Naphthalene is a commercially important aromatic hydrocarbon. Naphthalene occurs as a white solid or powder. Naphthalene occurs in coal tar in large quantities and is easily isolated from this source in pure condition. It volatilises and sublimes at room temperature above the melting point. The primary use for naphthalene is in the production of phthalic anhydride, also of carbamate insecticides, surface active agents and resins, as a dye intermediate, as a synthetic tanning agent, as a moth repellent, and in miscellaneous organic chemicals. Naphthalene is used in the production of phthalic anhydride; it is also used in mothballs. Naphthalene is also used in the manufacture of phthalic and anthranilic acids to make indigo, indanthrene, and triphenyl methane dyes, for synthetic resins, lubricant, celluloid, lampblack, smokeless powder, and hydronaphthalenes. Naphthalene is also used in dusting powders, lavatory deodorant discs, wood preservatives, fungicide, and as an insecticide. It has been used as an intestinal antiseptic and vermicide and in the treatment of pediculosis and scabies.
Chemical PropertiesNaphthalene is a colorless to brown crystalline solid with a characteristic “moth ball” odor. It evaporates easily and has a strong odor of tar or mothballs. Solubility in water is low (31.7 mg/l at 25 °C), and it is soluble in benzene, alcohol, ether, and acetone (ATSDR, 2005). Shipped as a molten solid.
HistoryIn 1819, naphthalene was obtained as white crystals during the pyrolysis of coal tar by John Kidd (1775–1851), a British physician and chemist, and Alexander Garden (1757–1829), an American living in Britain. Kidd described the properties of the white crystals he obtained from coal tar and proposed the named naphthaline for the substance; naphthaline was derived from naphtha, a general term for a volatile, fl ammable, hydrocarbon liquid. Michael Faraday (1791–1867) determined the correct empirical formula for naphthalene in 1825, and Richard August Carl Emil Erlenmeyer (1825–1909) proposed the fused benzene ring structure in 1866.
UsesIn addition to oxidation and reduction reactions, naphthalene readily undergoes substitutionreactions such as nitration, halogenation, sulfonation, and acylation to produce a varietyof other substances, which are used in the manufacture of dyes, insecticides, organic solvents,and synthetic resins. The principal use of naphthalene is for the production of phthalic anhydride,C8H4O3.
Naphthalene is catalytically oxidized to phthalic anhydride: 2C10H8 + 9O2 → 2C4H8O3 +4CO2 + 4H2O using metal oxide catalysts. Phthalic anhydride is used to produce plastics,phthalate plasticizers, insecticides, pharmaceuticals, and resins. Sulfonation of naphthalene withsulfuric acid produces naphthalenesulfonic acids, which are used to produce naphthalene sulfonates.Naphthalene sulfonates are used in various formulations as concrete additives, gypsumboard additives, dye intermediates, tanning agents, and polymeric dispersants. Naphthalene isused to produce carbamate insecticides such as carbaryl, which is a wide-spectrum, generalpurposeinsecticide.
UsesNaphthalene occurs naturally in fossil fuels such as coal and petroleum. It is commonly produced from the distillation and fractionation of coal tar. Naphthalene is used as an intermediate in the production of phthalate plasticizers, other plastics and resins, and other products such as dyes, wood preservatives, explosives, lubricants, pharmaceuticals, deodorizers, and insect repellants. Moth balls and other moth repellants, and some solid block deodorizers used for toilets and diaper pails, are made of crystalline naphthalene (ATSDR, 2005).
Production MethodsNaphthalene is produced from coal tar or petroleum. It is made from petroleum by dealkylationof methylnaphthalenes in the presence of hydrogen at high temperature and pressure.Petroleum was a major source of naphthalene until the 1980s, but now most naphthaleneis produced from coal tar. The pyrolysis of bituminous coal produces coke and coke ovengases. Naphthalene is condensed by cooling the coke gas and then separated from the gas.
Definitionnaphthalene: A white volatilesolid, C10H8; r.d. 1.025;m.p. 80.55°C; b.p. 218°C. Naphthaleneis an aromatic hydrocarbon withan odour of mothballs and is obtainedfrom crude oil. It is a raw materialfor making certain syntheticresins.
DefinitionChEBI: An aromatic hydrocarbon comprising two fused benzene rings. It occurs in the essential oils of numerous plant species e.g. magnolia.
Synthesis Reference(s)Journal of the American Chemical Society, 96, p. 3686, 1974 DOI: 10.1021/ja00818a072
The Journal of Organic Chemistry, 54, p. 4474, 1989 DOI: 10.1021/jo00279a046
Tetrahedron Letters, 27, p. 5541, 1986 DOI: 10.1016/S0040-4039(00)85262-4
General DescriptionHeterogeneous ozonolysis of naphthalene adsorbed on XAD-4 resin has been studied using annular denuder technique.
Air & Water ReactionsHighly flammable. Insoluble in water.
Reactivity ProfileVigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic hydrocarbons, such as Naphthalene, and strong oxidizing agents. They can react exothermically with bases and with diazo compounds. Substitution at the benzene nucleus occurs by halogenation (acid catalyst), nitration, sulfonation, and the Friedel-Crafts reaction. Naphthalene, camphor, glycerol, or turpentine will react violently with chromic anhydride [Haz. Chem. Data 1967. p 68]. Friedel-Crafts acylation of Naphthalene using benzoyl chloride, catalyzed by AlCl3, must be conducted above the melting point of the mixture, or the reaction may be violent [Clar, E. et al., Tetrahedron, 1974, 30, 3296].
HazardToxic by inhalation. Upper respiratory tract irritant, cataracts and hemolytic anemia. Possible carcinogen.
Health HazardInhalation of naphthalene vapor may causeirritation of the eyes, skin, and respiratorytract, and injury to the cornea. Other symptoms are headache, nausea, confusion, andexcitability. The routes of exposure of thiscompound into the body are inhalation, ingestion, and absorption through the skin; andthe organs that may be affected are the eyes,liver, kidney, blood, skin, and central nervoussystem.
The most severe toxic effects from naphthalene, however, may come from oral intakeof large doses of this compound. In animals, as well as in humans, ingestion of largeamounts may cause acute hemolytic anemiaand hemoglobinuria attributed to its metabolites, 1- and 2-naphthol and naphthoquinones.Infants are more sensitive than adults becauseof their lower capacity for methemoglobinreduction. Other symptoms from ingestion ofnaphthalene are gastrointestinal pain and kidney damage. The LD50 values reported inthe literature show variation among differentspecies. In mice, an oral LD50 value may beon the order of 600 mg/kg. Symptoms of respiratory depression and ataxia were noted.
Chronic exposure to naphthalene vapormay affect the eyes, causing opacities of thelens and optical neuritis. The acute effectsfrom inhalation of its vapors at high concentrations are nausea and vomiting.
Inhalation studies have shown positivetumorigenic response in mice. Studies conducted under National Toxicology Program(NTP) show clear evidence of carcinogenicityin rats resulting from inhalation of naphthalene vapors (NTP 2000). Increased incidencesof respiratory epithelial adenoma and olfactory epithelial neuroblastoma in the nose wereobserved in both the sexes of rats. On thebasis of these findings IARC has reevaluatednaphthalene and reclassified it under Group2B carcinogen, as possibly carcinogenic tohumans (IARC 2002)..
Fire HazardFlammable/combustible material. May be ignited by friction, heat, sparks or flames. Some may burn rapidly with flare burning effect. Powders, dusts, shavings, borings, turnings or cuttings may explode or burn with explosive violence. Substance may be transported in a molten form at a temperature that may be above its flash point. May re-ignite after fire is extinguished.
Flammability and ExplosibilityFlammable
Safety ProfileHuman poison by ingestion. Experimental poison by ingestion, intravenous, and intraperitoneal routes. Moderately toxic by subcutaneous route. An experimental teratogen. Experimental reproductive effects. An eye and skin irritant. Can cause nausea, headache, daphoresis, hematuria, fever, anemia, liver damage, vomiting, convulsions, and coma. Poisoning may occur by ingestion of large doses, inhalation, or skin absorption. Questionable carcinogen with experimental tumorigenic data. Flammable when exposed to heat or flame; reacts with oxidizing materials. Explosive reaction with dinitrogen pentaoxide. Reacts violently with CrOs, aluminum chloride + benzoyl chloride. Fires in the benzene scrubbers of coke oven gas plants have been attributed to oxidation of naphthalene. Explosive in the form of vapor or dust when exposed to heat or flame. To fight fire, use water, CO2, dry chemical. When heated to decomposition it emits acrid smoke and irritating fumes.
Potential ExposureNaphthalene is used as a chemical intermediate or feedstock for synthesis of phthalic, anthranilic, hydroxyl (naphthols), amino (naphthylamines), and sulfonic compounds; which are used in the manufacture of various dyes and in the preparation of phthalic anhydride, 1-naphthyl-N-methyl carbonate; and β-naphthol. Naphthalene is also used in the manufacture of hydronaphthalenes, synthetic resins; lampblack, smokeless powder; and celluloid. Naphthalene has been used as a moth repellent.
Approximately 100 million people worldwide have G6PD deficiency which would make them more susceptible to hemolytic anemia on exposure to naphthalene. At present, more than 80 variants of this enzyme deficiency have been identified. The incidence of this deficiency is 0.1% in American and European Caucasians, but can range as high as 20% in American blacks and greater than 50% in certain Jewish groups. Newborn infants have a similar sensitivity to the hemolytic effects of naphthalene, even without G6PD deficiency.
CarcinogenicityNaphthalene is reasonably anticipated to be a human carcinogenbased on sufficient evidence from studies in experimental animals.
ShippingUN1334 Naphthalene, crude or Naphthalene, refined, Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN2304 (molten) Hazard Class: 4.1; Labels: 4.1-Flammable solid.
Purification MethodsCrystallise naphthalene once or more times from the following solvents: EtOH, MeOH, CCl4, *C6H6, glacial acetic acid, acetone or diethyl ether, followed by drying at 60o in an Abderhalden drying apparatus. It has also been purified by vacuum sublimation and by fractional crystallisation from its melt. Other purification procedures include refluxing in EtOH over Raney Ni and chromatography of a CCl4 solution on alumina with *benzene as eluting solvent. Baly and Tuck [J Chem Soc 1902 1908] purified naphthalene for spectroscopy by heating with conc H2SO4 and MnO2, followed by steam distillation (repeating the process), and formation of the picrate which, after recrystallisation (m 150o) is decomposed with base and the naphthalene is steam distilled. It is then crystallised from dilute EtOH. It can be dried over P2O5 under vacuum (take care not to make it sublime). Also purify it by sublimation and subsequent crystallisation from cyclohexane. Alternatively, it has been washed at 85o with 10% NaOH to remove phenols, with 50% NaOH to remove nitriles, with 10% H2SO4 to remove organic bases, and with 0.8g AlCl3 to remove thianaphthalenes and various alkyl derivatives. Then it is treated with 20% H2SO4, 15% Na2CO3 and finally distilled. [Gorman et al. J Am Chem Soc 107 4404 1985.] Zone refining purified naphthalene from anthracene, 2,4-dinitrophenylhydrazine, methyl violet, benzoic acid, methyl red, chrysene, pentacene and indoline. [Beilstein 5 IV 1640.]
Toxicity evaluationSystemic absorption of naphthalene vapor may result in cataracts. The biochemical basis for naphthalene cataract has been investigated. Naphthalene is metabolized in the liver to 1,2-dihydro-1,2-dihydroxynaphthalene. Lenticular catechol reductase biotransforms 1,2-dihydro-1,2-dihydroxynaphthalene to 1,2-dihydroxynaphthalene, which, in turn, is auto-oxidized in air at neutral pH to 1,2-naphthoquinone and hydrogen peroxide. Ascorbic acid reverses the latter reaction and forms dehydroascorbic acid, which diffuses out of the lens very slowly. Dehydroascorbic acid has been shown to accumulate in the lens of rabbits that were fed naphthalene and lens incubated in vitro with 1,2-dihydro- 1,2-dihydroxynaphthalene. The sequence of reactions involves the reduction of ascorbic acid by 1,2-naphthoquinone in the aqueous humor to dehydroascorbic acid, which rapidly penetrates the lens and is reduced by glutathione. Oxidized glutathione and 1,2-naphthoquinone may compete for enzyme glutathione reductase, which normally maintains high reticular levels of reduced glutathione. A reduction in the concentration of these coupled with the removal of oxygen from the aqueous humor due to the autooxidation of 1,2-dihydroxynaphthalene may make the lens sensitive to naphthalene toxicity.
IncompatibilitiesDust may form explosive mixture with air. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Violent reactions with chromium(III) oxide, dinitrogen pentoxide; chromic anhydride.
Waste DisposalDissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal.
ReferencesFormation Mechanisms of Naphthalene and Indene: From the Interstellar Medium to Combustion Flames. DOI:10.1021/acs.jpca.6b09735
Functional Naphthalene Diimides: Synthesis, Properties, and Applications. DOI:10.1021/ACS.CHEMREV.6B00160
The 100 Most Important Chemical Compounds: A Reference Guide DOI:10.5860/choice.45-3798
A comprehensive guide to the hazardous properties of chemical substances DOI:10.1002/9780470134955
A Dictionary of Chemistry (6th edition) DOI:10.1108/09504120910935291
TOXICOLOGICAL REVIEW of NAPHTHALENE
Naphthalene - Environmental Protection Agency
Tag:Naphthalene(91-20-3) Related Product Information
Carbaryl Nabumetone Anthracene Phenanthrene 9-CHLOROANTHRACENE 9-Bromophenanthrene 9-AMINOPHENANTHRENE 9,10-DIAMINOPHENANTHRENE PHENANTHRENE-9-CARBOXALDEHYDE 9-ACETYLPHENANTHRENE 3,6-DIMETHYLPHENANTHRENE 9,10-Dibromoanthracene 9-Bromoanthracene 9-Anthrracenecarbonitrile 2-ACETYLPHENANTHRENE 9-CYANOPHENANTHRENE Fluoranthene 2-METHYLPHENANTHRENE Mothballs Naphthalin