ChemicalBook > Product Catalog >Biochemical Engineering >Biochemical Reagents >Acid-base indicator >Curcumin

Curcumin

Curcumin Suppliers list
Company Name: career henan chemical co
Tel: +86-371-86658258
Email: sales@coreychem.com
Products Intro: Product Name: Curcumin
CAS:458-37-7
Purity:99% Package:1KG;15USD
Company Name: Shaanxi Yikanglong Biotechnology Co., Ltd.
Tel: 17791478691
Email: yklbiotech@163.com
Products Intro: Product Name:Curcumin
CAS:458-37-7
Purity:99%(Customizable specifications) Package:1KG;1USD Remarks:Factory stock, quality assurance, price concessions
Company Name: Hebei Dongdu Import and Export Co. LTD
Tel: 15831048222
Email: manager@cndongdu.com
Products Intro: Product Name:Curcumin
CAS:458-37-7
Purity:95% HPLC Package:25Kg/Drum;90USD
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-66670886
Email: info@dakenchem.com
Products Intro: Product Name:Curcumin
CAS:458-37-7
Purity:99% Package:100g,500g,1KG,10KG,100KG
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Email: info@tianfuchem.com
Products Intro: Product Name:Curcumin
CAS:458-37-7
Purity:0.99 Package:25KG,5KG;1KG;500G

Lastest Price from Curcumin manufacturers

  • Curcumin
  • US $50.00 / KG
  • 2021-10-19
  • CAS:458-37-7
  • Min. Order: 1KG
  • Purity: 99%
  • Supply Ability: 5 Tons
  • Curcumin
  • US $90.00 / Kg/Drum
  • 2021-10-14
  • CAS:458-37-7
  • Min. Order: 10Kg/Drum
  • Purity: 95% HPLC
  • Supply Ability: 30tons
  • Curcumin
  • US $10.50 / KG
  • 2021-08-26
  • CAS:458-37-7
  • Min. Order: 1KG
  • Purity: 30%
  • Supply Ability: 10 ton
Curcumin Basic information
Product Name:Curcumin
Synonyms:Curcumin, Natural Yellow 3, Diferuloylmethane;5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-,(e,e)-6-heptadiene-3;5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-6-heptadiene-3;6-Heptadiene-3,5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-,(E,E)-1;curcuma;haidr;halad;haldar
CAS:458-37-7
MF:C21H20O6
MW:368.38
EINECS:207-280-5
Product Categories:Diferuloylmethane, Natural Yellow 3, C.I. 75300;phytochemical;Colorants;reference standards from Chinese medicinal herbs (TCM).;standardized herbal extract;pigment;Miscellaneous Natural Products;Analytical Chemistry;Antioxidant;Natural Plant Extract;Aromatics;Inhibitors;Intermediates & Fine Chemicals;Pharmaceuticals;Biochemistry;Indicator (pH);pH Indicators;chemical reagent;pharmaceutical intermediate;Chalcone;Miscellaneous;VX:15689727968
Mol File:458-37-7.mol
Curcumin Structure
Curcumin Chemical Properties
Melting point 183 °C
Boiling point 418.73°C (rough estimate)
density 0.93
vapor density 13 (vs air)
refractive index 1.4155-1.4175
Fp 208.9±23.6 °C
storage temp. 2-8°C
solubility ethanol: 10 mg/mL
form powder
Colour Index 75300
pka8.09(at 25℃)
color orange
PH RangeYellow (7.8) to red-brown (9.2)
OdorOdorless
Water Solubility Slightly soluble (hot)
λmax430nm
Merck 14,2673
BRN 2306965
Stability:Stable, but may be light sensitive. Incompatible with strong oxidizing agents.
Major ApplicationCosmetics, drug-eluting stents, inhibition of formation of skin-wrinkles, treating alzheimer’s disease, skin diseases, coronary restenosis, diabetes, obesity, leukemia, neurofibromas, cancer, antimicrobial, antiviral, antiinflammatory, antiprostate cancer
InChIKeyVFLDPWHFBUODDF-FCXRPNKRSA-N
CAS DataBase Reference458-37-7(CAS DataBase Reference)
EPA Substance Registry SystemCurcumin (458-37-7)
Safety Information
Hazard Codes Xi
Risk Statements 36/37/38
Safety Statements 26
WGK Germany 3
RTECS MI5230000
Hazard Note Irritant
TSCA Yes
HS Code 29145000
Hazardous Substances Data458-37-7(Hazardous Substances Data)
ToxicityLD50 Oral-Rat-12.200 mg/kg
MSDS Information
ProviderLanguage
C.I. 75300 English
Curcumin Usage And Synthesis
DescriptionThe main source of curcumin is the root of Zingiberaceae Curcuma aromatica, rhizome of Curcuma longa (Jiang Huang), Curcuma zedoaria, and Acorus calamus. Among them, Jiang Huang contains about 3–6% curcumin. The traditional Chinese medicine, Jiang Huang, is the root tuber of perennial herbaceous plant Curcuma longa L. of family Zingiberaceae. It was firstly recorded in the “Tang materia medica” (Xin Xiu Ben Cao). It is pungent, bitter, and warm and enters the liver and spleen meridians. It activates the blood, moves qi, dredges meridians, and alleviates pain. In India and other Asian countries, Jiang Huang has more than 6000?years of application history. In Japan, Jiang Huang has a long history of health care, and the people of Okinawa Island regarded Jiang Huang as a holy tribute to the emperor. Jiang Huang mainly comes from Taiwan, Fujian, Guangdong, Guangxi, Yunnan, and Tibet of China and other regions in East Asia and Southeast Asia. It grows in warm and humid climate and sunny environment with abundant rainfall and fears cold frost, drought, and flood. At present, Chinese Pharmacopoeia only included Jiang Huang and Yu Jin which contains curcumin, while curcumin is not included.
Chemical PropertiesSeveral species of Curcuma exist: C. xanthorrhyza, C. domestica, C. zedoafia, C. caesia and C. amada. Although all these are aromatic plants, C. longa is the one used as a flavor ingredient. The plant is originally from southern Asia and is widespread throughout India, Malaysia, Ceylon and Japan. It is a perennial herb whose rhizome yields (like that of ginger, which it also resembles) climbing stalks with leaves only or with leaves and flowers. Reproduction occurs through the splitting of the rhizome, which is the only part used (dried rhizome as is or after previously boiling in water). Turmeric has a spicy, fresh odor reminiscent of sweet orange and ginger and a slightly pungent, bitter flavor.
Chemical Propertiesorange crystalline powder
Physical propertiesAppearance: orange-brown crystalline powder and tastes a little bitter. It will turn into reddish brown in alkaline solution and yellow in neutral and acidic solution. It has strong stability against the reducing agent. It has excellent pigmentation which is not easy to fade. It is sensitive to light, heat, and iron ion. When PH is greater than 8, curcumin turns from yellow to red, which can be used as a pH indicator.
Solubility: insoluble in water or diethyl ether and soluble in ethanol, propylene glycol, acetic acid, and alkali solution.
Melting point: about 183 °C.
HistoryCurcumin is one such agent that was described about two centuries ago as the yellow coloring matter from the rhizomes of Curcuma longa. Besides curcumin, more than 300 different components, including phenolics and terpenoids, have been identified in turmeric, but curcumin is one of the most important active components . Pure curcumin was prepared in 1842 by Vogel Jr. After 1870, the possible structure of curcumin was reported by several chemists in the subsequent decades. The chemical structure of curcumin as diferuloylmethane or 1,6-heptadiene-3,5-dione-1,7-bis (4-hydroxy-3-methoxyphenyl)-(1E, 6E) was reported by Milobedzka et?al. (1910). Lampe and Milobedzka (1913) reported the synthesis of curcumin. However, Srinivasan (1953) for the first time used chromatography to separate and quantify the components of curcumin .
Jiang Huang has been used for more than 6000 years; it is also well known for its medicinal value and active ingredients. But it was not until the middle of the twentieth century that scientists conducted a systematic study on their pharmacological effects. In 1949, Schraufstatter and Bernt found that curcumin has a variety of antibacterial effects against Streptococcus, Salmonella, Mucor, Mycobacterium and so on . In the 1970s, the study also found that it has lipid-lowering, anti-inflammatory, antioxidant, and antidiabetic effects. In 1980s, it was found to have antitumor effects. In the last 30 years, there are many reports about the clinical and pharmacological effects of curcumin.
At present, more than 65 human clinical trials have been completed, and more than 35 clinical trials are in progress. In addition, the study of curcumin derivatives has also become a hot topic in recent years.
UsesFor preparing curcuma paper, pH range 8-9. In the detection of boron.
UsesA natural phenolic compound. Potent anti-tumor agent having anti-inflammatory and anti-oxidant properties. Induces apoptosis in cancer cells and inhibits phorbol ester-induced protein kinase C (PKC) activity. Reported to inhibit production of inflammatory cytokines by peripheral blood monocytes and alveolar macrophages. Potent inhibitor of EGFR tyrosine kinase and IκB kinase. Inhibits inducible nitric oxide synthase (iNOS), cycloxygenase and lipoxygenase. Easily penetrates into the cytoplasm of cells, accumulating in membranous structures such as plasma membrane, endoplasmic reticulum and nuclear envelope.
Usesantiedemic, antiinflammatory, bile stimulant; antibacterial, antifungal, lipo/cyclooxygenase inhibitor
UsesCurcumin is the principal curcuminoid of the popular Indian spice turmeric, which is a member of the ginger family (Zingiberaceae). The curcuminoids are polyphenols and are responsible for the yellow color of turmeric. Curcumin can exist in at least two t
DefinitionChEBI: A beta-diketone that is methane in which two of the hydrogens are substituted by feruloyl groups. A natural dyestuff found in the root of Curcuma longa.
General DescriptionOrange-yellow needles.
Air & Water ReactionsSlightly soluble in hot water .
Reactivity ProfileCurcumin is sensitive to light and changes in pH. Curcumin may react with oxidizing materials.
Biological ActivityAntitumor, anti-inflammatory and antioxidant agent. Downregulates expression of reactive-oxygen-generating enzymes (cyclooxygenase, lipoxygenase, iNOS), TNF α , IL-1, IL-6, PKC, EGFR, NF- κ B, I κ B kinase and more. Upregulates expression of PPAR γ , p53, Nrf2. Also displays antimicrobial, antidiabetic neuro- and cardioprotective properties in vivo .
Pharmacology1. Anti-fibrosis effects: curcumin has the effect of anti-fibrosis in the lung, liver, kidney, and so on. It could inhibit the release of various inflammatory factors and reduce the expression of collagen, laminin, hyaluronic acid, and other extracellular matrix content. It could also reduce the transforming growth factors such as TGF-尾 to inhibit cell proliferation .
2. Antitumor effects: the antitumor effect of curcumin is currently the most studied pharmacological effects and attracts a lot of attention worldwide. Curcumin has been proved to inhibit the proliferation of a variety of tumor cells through regulating a variety of transcription factors (NF-κB, AP-1, etc.), mitogen-activated protein kinase (MAPK), growth factor receptor kinase (PDGFR, VEGFR, etc.), and cyclooxygenase. It plays an important role in the cell cycle and further to inhibit proliferation. Curcumin can also inhibit the migration of tumor cells by activating caspase and inducing tumor cell apoptosis .
3. Anti-inflammatory effects: curcumin has a strong inhibitory effect on different kinds of inflammation. The mechanism might relate to the reduction of the expression of prostaglandins and leukotriene to decrease the release of various inflammatory factors. The anti-inflammatory effect of curcumin is close to that of nonsteroidal anti-inflammatory drugs and glucocorticoids, but it has higher safety and lower side effects .
4. Antimicrobial effects: curcumin has a strong inhibitory effect on bacteria, viruses, fungi, and parasites . Researchers believe that curcumin may play a role in inhibiting microbial survival and reproduction by destroying microbial cell membranes, inducing their genetic changes, and so on.
5. Hypolipidemic effect: many researchers believe that curcumin will become a hypolipidemic drug with a good prospect. It can lower the levels of total blood cholesterol and triglyceride levels, increase apolipoprotein A level, promote lowdensity lipoprotein (LDL) metabolism, and increase LDL excretion to reduce LDL body content .
6. Drug metabolism: rats were treated with a single dose of refined curcumin orally, 60–65% of which was absorbed by the gastrointestinal tract. Within 5 days, 40% of curcumin were excreted from the feces. The plasma concentration reached the peak after 3 days. The transformation of curcumin happened in the process of hepato-enteral circulation .
Anticancer ResearchIt is a yellow-colored polyphenolic compound found in turmeric and used as a foodadditive. It has antitumor effects involved in mutagenesis, cell cycle regulation,apoptosis, oncogene expression, and metastasis. Thus it regulates the initiation,promotion, and progression of disease (Hosseini and Ghorbani 2015). Its mechanismof action is diversified and convoluted. 10 μM curcumin suppresses binding of theTPA response element (TRE) by c-Jun/activator protein-1 in NIH 3 T3 cells ofmouse fibroblasts. Both protein kinase C and ornithine decarboxylase are alsoinhibited by curcumin. Inhibition of cyclooxygenase and lipoxygenase leads tosuppression of arachidonic acid cascade (Murakami et al. 1996). Curcumin is animpressive blocker of the activation of NF-κB by inhibiting IκB kinase (IKK).Curcumin also downregulates cyclin D1, suppresses the cell growth, and inducesapoptosis in prostate, breast, acute myelogenous leukemia, and multiple myelomacancer cells. It may act against psoriasis by inhibition of phosphorylase kinaseenzyme (Aggarwal and Shishodia 2004). Curcumin downregulates the TNF-inducedNF-κB-regulated gene products involved in cellular proliferation (cyclin D1, COX-2,c-myc), antiapoptosis (IAP2, IAP1, Bcl-2, XIAP, Bcl-xL, TRAF1, Bf1–1/A1,Cflip), and metastasis (MMP-9, VEGF, ICAM-1). It also suppresses the activity ofIκBα kinase, κBα degradation, IκBα phosphorylation, p65 nuclear translocation,p65 phosphorylation, and p65 acetylation (Aggarwal et al. 2008). It upregulates the expression of p53, p16, p21, EGR1 (early growth response protein1), ERK(extracellular signal-regulated kinase), JNK(c-Jun-N-terminal kinase), ElK1, Bax,and caspase 3, caspase8, and caspase9 proteins and downregulates Bcl2, mTOR,p65, Bcl-xL, AKT, EGFR, cdc2, retinoblastoma protein (Prb), c-myc, and cyclin D1proteins (Singh et al. 2016b). It can dissociate raptor from mTOR and inhibit mTORcomplex1. The inhibition of the Akt/mTOR signaling results from thedephosphorylation dependent on the calyculin A-sensitive protein phosphatase.Further, it modulating effect on AP-1 in HT-29 human colon cancer cells was foundto be a dose-dependent increase of AP-1 luciferase activity (Ravindran et al. 2009).
Curcumin is a dynamic element of turmeric, an outstanding Indian zest that isobtained from the plant Curcuma longa dried roots. Curcumin hindered PDGFR-incitedproliferation of human hepatic myofibroblasts (Zheng and Chen 2006). Theactivated mechanism by curcumin in PDGF signaling is as follows: Curcumindecreases the level of tyrosine phosphorylation of PDGFR-β and EGF-R; repressesthe action of ERK, JNK, and PI3/AKT; reduces cell growth; and induces apoptosisdose-dependently (Kunnumakkara et al. 2008). Moreover, curcumin interferes withPDGF signaling via relieving its inhibitory effect on PPARγ gene expression toreduce the cell growth; it also promotes the expression of PPARγ genes (Zhou et al.2007).
This compound is a yellow pigment produced by plants, mostly by those in theginger family (Zingiberaceae). Curcumin has enormous potential in terms of cancerprevention and treatment, and numerous studies and reviews described it as a potentantioxidant and anti-inflammatory agent (Aggarwal et al. 2003; Agrawal and Mishra2010). It inhibits biochemical activity, restraining overexpression of some signallingpathways and regulating the expression of tumour suppression genes (Cre?uet al. 2012). Temu kunci, or galangal (Boesenbergia pandurata), is a rhizome generallyused in cooking that can also be prepared to treat diarrhoea and mouth ulcers.It has been proven non-toxic to human skin fibroblast cells and offers protectiveeffects against colon cancer (Kirana et al. 2007). Turmeric (Curcuma longa) andginger (Zingiber officinale) are two plants that contain an abundance of curcuminand which have been investigated for their therapeutic properties. One piece ofresearch, for example, showed that ethanolic extract of turmeric showed anti-melanomaactivity against malignant melanomas (Danciu et al. 2015).
Clinical Use1. Cholagogic effect could promote bile formation and secretion.
2. Hypolipidemic effect could reduce the level of cholesterol in the blood and prevent atherosclerosis.
3. Antibacterial and antiviral effect could inhibit Staphylococcus aureus and HIV.
4. Liver protection.
5. Anticancer and antitumor effect.
6. Help with the prevention of dementia.
7. Anti-inflammation and treatment of acne and dermatitis.
8. There are no reports of adverse effect of curcumin till now.
Purification MethodsCrystallise curcumin from EtOH or acetic acid. [Beilstein 8 IV 3697.]
Tag:Curcumin(458-37-7) Related Product Information
curcumin 4,4'-diacetate Diethyl pimelate CURCUMIN DIACETATE CURCUMIN 3,BISDEMETHOXY CURCUMIN 4-(4-HYDROXY-3-METHOXYPHENYL)-3-BUTEN-2-ONE CURCUMIN, [3H]- (E)-3,4-Dihydroxybenzylideneacetone, 97% 1,6-Octadiene Allylacetone DEMETHOXYCURCUMIN 4-HYDROXY-3-METHOXYCINNAMALDEHYDE TRANS-1-PHENYL-1-PENTENE ISOEUGENOL 1,6-Heptadiene 4-Hydroxybenzylideneacetone 4-Hydroxy-3-methoxystyrene 4-Methoxyphenylacetone (Trifluoromethoxy)benzene