ChemicalBook > Product Catalog >Inorganic chemistry >Inorganic bases >BERYLLIUM

BERYLLIUM

BERYLLIUM Suppliers list
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Email: sales@mainchem.com
Products Intro: Product Name:BERYLLIUM
CAS:7440-41-7
Company Name: J & K SCIENTIFIC LTD.  
Tel: 400-666-7788 +86-10-82848833
Email: jkinfo@jkchemical.com;market6@jkchemical.com
Products Intro: Product Name:Beryllium powder (99+%)
CAS:7440-41-7
Purity:(99+%) Package:25g;5g
Company Name: Meryer (Shanghai) Chemical Technology Co., Ltd.  
Tel: +86-(0)21-61259100(Shanghai) +86-(0)755-86170099(ShenZhen) +86-(0)10-62670440(Beijing)
Email: sh@meryer.com
Products Intro: Product Name:BerylliuM powder
CAS:7440-41-7
Purity:99% Remarks:AAM130262
Company Name: Alfa Aesar  
Tel: 400-610-6006; 021-67582000
Email: saleschina@alfa-asia.com
Products Intro: Product Name:BerylliuM bead, ^=19MM (0.75in) dia
CAS:7440-41-7
Package:1pc Remarks:045120
Company Name: Energy Chemical  
Tel: 021-58432009 / 400-005-6266
Email: info@energy-chemical.com
Products Intro: Product Name:BerylliuM wire, 0.25MM (0.01in) dia, annealed, 99.7% (Metals basis)
CAS:7440-41-7
Package:25MM,50MM
BERYLLIUM Basic information
Product Name:BERYLLIUM
Synonyms:BERYLLIUM AA/ICP CALIBRATION/CHECK STANDARD;BERYLLIUM AA SINGLE ELEMENT STANDARD;BERYLLIUM, AAS STANDARD SOLUTION;BERYLLIUM AA STANDARD;BERYLLIUM ATOMIC ABSORPTION SINGLE ELEMENT STANDARD;BERYLLIUM ATOMIC ABSORPTION STANDARD;BERYLLIUM ATOMIC SPECTROSCOPY STANDARD;BERYLLIUM METAL
CAS:7440-41-7
MF:Be
MW:9.01
EINECS:231-150-7
Product Categories:Inorganics;BerylliumMetal and Ceramic Science;Metals;Beryllium;Catalysis and Inorganic Chemistry;Chemical Synthesis;metal or element
Mol File:7440-41-7.mol
BERYLLIUM Structure
BERYLLIUM Chemical Properties
Melting point 1278 °C(lit.)
Boiling point 2970 °C(lit.)
density 1.85 g/mL at 25 °C(lit.)
storage temp. Store at +15°C to +25°C.
form powder
color Gray
PH0.5 (H2O, 20°C)
resistivity4.46 μΩ-cm, 20°C
Water Solubility soluble acids except HNO3; soluble alkalies [HAW93]
Merck 13,1164
Stability:Stable. Incompatible with acids, bases, oxidizing agents, halogen compounds, halogens, alkali metals.
CAS DataBase Reference7440-41-7(CAS DataBase Reference)
Safety Information
Hazard Codes T+,T
Risk Statements 49-25-26-36/37/38-43-48/23-20
Safety Statements 53-45
RIDADR UN 1567 6.1/PG 2
WGK Germany 1
RTECS DS1750000
Autoignition Temperature1198 °F
TSCA Yes
HS Code 3822 00 00
HazardClass 8
PackingGroup III
ToxicityElemental Be and its compounds are very poisonous by inhalation or intravenous route. Chronic inhalation of beryllium dusts or fumes can cause a serious lung disease, berylliosis, after a latent period ranging from several months to many years. Inhalation of airborne dusts can also cause an acute disease manifested as dyspnea, pneumonitis and tracheobronchitis with a short latency period of a few days. Skin contact with soluble salts of the metal can cause dermatitis. Beryllium also is a carcinogen. There is sufficient evidence of its inducing cancer in animals and humans. It is one of the US EPA's listed priority pollutant metals in the environment.
MSDS Information
ProviderLanguage
SigmaAldrich English
ACROS English
ALFA English
BERYLLIUM Usage And Synthesis
DescriptionBeryllium is widely distributed in the earth's crust at trace concentration, 2.8 mg/kg. The element was first discovered by Vauquelin in 1797. Wohler and Bussy in 1828 independently isolated beryllium in the metallic form from its oxide. In nature, beryllium occurs in several minerals, mostly combined with silica and alumina. The most common minerals are beryl, 3BeO•Al2O3•6SiO2; chrysoberyl, BeO•Al2O3; phenacite, 2BeO•SiO2; and bertrandite, 4BeO•2SiO2•H2O. Also, it is found in trace amounts in the ore feldspar, and in volcanic ash. It's abundance in the sea water is estimated in the range 5.6 ppt.
Beryllium oxide is a component of precious stones, emerald, aquamarine and topaz. Beryllium is utilized in nuclear reactors to moderate the velocity of slow neutrons. It is hot-pressed to appropriate shapes and sizes that yield high strength and ductility for its applications.
Chemical PropertiesGrayish metal; hexagonal close-packed crystal system, lattice constant, a=2.286 Å and c=3.584 Å; density 1.85 g/cm3; permeable to x-rays; highly ductile; modulus to weight ratio very high, elastic modulus 44.5 x 106 at 25°C (for hot-pressed block and sheet); melting point 1,287°C; vaporizes at 2,471°C; sound transmission velocity 12,600 m/sec; reflectivity (white light) 55%; thermal neutron absorption cross-section 0.0090 barns/atom; electrode potential, Be/Be2+(aq) 1.85 V; electrical resistivity 3.36 x 10–10 ohm.m (at 20°C).
Chemical PropertiesBeryllium is a brittle, steel-grey metal found as a component of coal, oil, certain rock minerals, volcanic dust, and soil. It reacts with strong acids and strong bases forming flammable/explosive gas. It has several applications in the aerospace, nuclear, and manufacturing industries. In addition, beryllium is amazingly versatile as a metal alloy where it is used in dental appliances, golf clubs, non-sparking tools, wheelchairs, and electronic devices. Beryllium is used in alloys with a number of metals including steel, nickel, magnesium, zinc, and aluminium, the most widely used alloy being beryllium copper – properly called ‘a bronze’ – which has a high tensile strength and a capacity for being hardened by heat treatment. One of the largest uses of beryllium is as a moderator of thermal neutrons in nuclear reactors and as a reflector to reduce the leakage of neutrons from the reactor core. A mixed uranium–beryllium source is often used as a neutron source. As a foil, beryllium is used as window material in x-ray tubes. Its lightness, high elastic modulus, and heat stability make it an attractive material for the aircraft and aerospace industry. Beryllium ores are used to make special ceramics for electrical and high-technology applications. Beryllium alloys are used in automobiles, computers, sports equipment (golf clubs and bicycle frames), and dental bridges. It is used in nuclear reactors as a reflector or moderator for it has a low thermal neutron absorption cross section. It is used in gyroscopes, computer parts, and instruments where lightness, stiffness, and dimensional stability are required. The oxide has a very high melting point and is also used in nuclear work and ceramic applications.
Chemical PropertiesBeryllium is a brittle, steel-gray metal found as a component of coal, oil, certain rock minerals, volcanic dust, and soil. It reacts with strong acids and strong bases forming flammable/explosive gas. It has several applications in the aerospace, nuclear, and manufacturing industries. In addition, beryllium is amazingly versatile as a metal alloy where it is used in dental appliances, golf clubs, non-sparking tools, wheel chairs, and electronic devices. Beryllium is used in alloys with a number of metals, including steel, nickel, magnesium, zinc, and aluminum, the most widely used alloy being beryllium-copper—properly called “a bronze”—which has a high tensile strength and a capacity for being hardened by heat treatment. Beryllium bronzes are used in non-spark tools, electrical switch parts, and watch springsOne of the largest uses of the metal is as a moderator of thermal neutrons in nuclear reactors and as a refl ector to reduce the leakage of neutrons from the reactor core. A mixed uranium-beryllium source is often used as a neutron source. As a foil, beryllium is used as window material in x-ray tubes. Its lightness, high elastic modulus, and heat stability make it an attractive material for the aircraft and aerospace industry. Berylliumores are used to make special ceramics for electrical and high-technology applications. Beryllium alloys are used in automobiles, computers, sports equipment (golf clubs and bicycle frames), and dental bridges. It used in nuclear reactors as a refl ector or moderator because it has a low thermal neutron absorption cross section. It is used in gyroscopes, computer parts, and instruments where lightness, stiffness, and dimensional stability are required. The oxide has a very high melting point and is also used in nuclear work and ceramic applications. Normally, the general population is exposed to low levels of beryllium in air, food, and water. People working in industries where beryllium is mined, processed, machined, or converted into metal, alloys, and other chemicals, may be exposed to high levels of beryllium. People living near these industries may also be exposed to higher than normal levels of beryllium in air. People living near uncontrolled hazardous waste sites may be exposed to higher than normal levels of beryllium.
Chemical PropertiesBeryllium is a gray shiny metal or powder, or fine granules which resemble powdered aluminum. Beryllium is slightly soluble in water. All beryllium compounds are soluble in water, to some degree. Berylore is the primary source of beryllium, although there are numerous other sources.
HistoryBeryllium was discovered as the oxide by Vauquelin in beryl and in emeralds in 1798. The metal was isolated in 1828 by Wohler and by Bussy independently by the action of potassium on beryllium chloride. Beryllium is found in some 30 mineral species, the most important of which are bertrandite, beryl, chrysoberyl, and phenacite. Aquamarine and emerald are precious forms of beryl. Beryllium minerals are found in the U.S., Brazil, Russia, Kazakhstan, and elsewhere. Colombia is known for its emeralds. Beryl (3BeO · Al2O3 · 6SiO2) and bertrandite (4BeO · 2SiO2 · H2O) are the most important commercial sources of the element and its compounds. Most of the metal is now prepared by reducing beryllium fluoride with magnesium metal. Beryllium metal did not become readily available to industry until 1957. The metal, steel gray in color, has many desirable properties. It is one of the lightest of all metals, and has one of the highest melting points of the light metals. Its modulus of elasticity is about one third greater than that of steel. It resists attack by concentrated nitric acid, has excellent thermal conductivity, and is nonmagnetic. It has a high permeability to X-rays, and when bombarded by alpha particles, as from radium or polonium, neutrons are produced in the ratio of about 30 neutrons/million alpha particles. At ordinary temperatures beryllium resists oxidation in air, although its ability to scratch glass is probably due to the formation of a thin layer of the oxide. Beryllium is used as an alloying agent in producing beryllium copper, which is extensively used for springs, electrical contacts, spot-welding electrodes, and nonsparking tools. It has found application as a structural material for high-speed aircraft, missiles, spacecraft, and communication satellites. It is being used in the windshield frame, brake discs, support beams, and other structural components of the space shuttle. Because beryllium is relatively transparent to X-rays, ultra-thin Be-foil is finding use in X-ray lithography for reproduction of microminiature integrated circuits. Natural beryllium is made of 9Be and is stable. Eight other radioactive isotopes are known.
Beryllium is used in nuclear reactors as a reflector or moderator for it has a low thermal neutron absorption cross section. It is used in gyroscopes, computer parts, and instruments where lightness, stiffness, and dimensional stability are required. The oxide has a very high melting point and is also used in nuclear work and ceramic applications. Beryllium and its salts are toxic and should be handled with the greatest of care. Beryllium and its compounds should not be tasted to verify the sweetish nature of beryllium (as did early experimenters). The metal, its alloys, and its salts can be handled safely if certain work codes are observed, but no attempt should be made to work with beryllium before becoming familiar with proper safeguards. Beryllium metal is available at a cost of about $5/g (99.5% pure).
DefinitionChEBI: Alkaline earth metal atom with atomic number 4.
Production MethodsMetallic beryllium is produced by reduction of beryllium halide with sodium, potassium or magnesium. Commercially, it is obtained primarily from its ore, beryl. Beryllium oxide is separated from silica and alumina in ore by melting the ore, quenching the solid solution, and solubilizing in sulfuric acid at high temperatures and pressure. Silica and alumina are removed by pH adjustment. Beryllium is converted to its hydroxide. Alternatively, beryl is roasted with complex fluoride. The products are dissolved in water and then pH is adjusted to produce beryllium hydroxide.
The impure hydroxide obtained above is purified by converting to a double salt, ammonium beryllium fluoride, which subsequently, on thermal decomposition, gives beryllium fluoride. The latter is heated with magnesium metal BERYLLIUM 97 to form pure beryllium metal:
BeF +Mg→Be + MgF2
It finally is purified by either vacuum melting or chelation with an organophosphate reagent followed by liquid-liquid extraction. Beryllium halide alternatively may be reduced to the metal or converted to alloy by electrolysis.
UsesSource of neutrons when bombarded with alpha particles according to the equation 94Be + 42He 612C + 10n. This yields about 30 neutrons per million alpha particles. Also as neutron reflector and neutron moderator in nuclear reactors. In beryllium copper and beryllium aluminum alloys (by direct reduction of beryllium oxide with carbon in the presence of Cu or Al). In aerospace, aircraft and satellite structures; x-ray transmission windows; missile parts; nuclear weapons; fuel containers; precision instruments; rocket propellants; navigational systems; heat shields; and mirrors. For fiber optics and cellular network communications systems.
ReactionsMost chemical reactions of beryllium are similar to those of aluminum and, to a lesser extent, magnesium. In general, all the common mineral acids attack beryllium forming their corresponding salts with evolution of hydrogen:
Be + 2HCl → BeCl2 + H2
Cold, concentrated nitric acid, however, has no effect when mixed with the metal.
Reactions with alkalies first produce insoluble beryllium hydroxide with evolution of hydrogen. Excess alkali converts the hydroxide to water-soluble beryllate:
Be(OH)2 + 2NaOH → Na2BeO2 + H2O
Beryllium does not react with oxygen at ordinary temperatures and normal atmosphere. When heated above 700°C, the metal combines with nitrogen, (in an oxygen-free atmosphere) forming beryllium nitride, Be3N2.
Beryllium combines with carbon when heated above 900°C in the absence of air to form beryllium carbide.
2Be + 2C→(>900℃)→Be2C
Beryllium reacts incandescently with fluorine or chlorine, producing beryllium fluoride or chloride.
General DescriptionA grayish-white hard light metal. Denser than water, but the powder may float. May be toxic by inhalation. Will burn if involved in a fire.
Air & Water ReactionsHighly flammable. Insoluble in water.
Reactivity ProfileBoron trifluoride reacts with incandescence when heated with alkali metals or alkaline earth metals except magnesium [Merck 11th ed. 1989]. Finely divided or amalgamated metal reacts with HCl, dil HNO3, or dil H2SO4; attacked by strong base with evolution of hydrogen gas [Merck 11th ed. 1989]. BERYLLIUM has been determined experimentally that a mixture of BERYLLIUM with carbon tetrachloride or with trichloroethylene will flash or spark on heavy impact [ASESB Pot. Incid. 39 1968]. The reaction between beryllium and the vapors of phosphorus proceeds with incandescence [Mellor 8:842 1946-47].
HazardA confirmed carcinogen. Very high toxicity, especially by inhalation of dust.
Health HazardAny dramatic, unexplained weight loss should be considered as possible first indication of beryllium disease. Dust is extremely toxic when inhaled; symptoms include coughing, shortness of breath, and acute or chronic lung disease. There is no record of illness from ingestion of beryllium. Contact with dust causes conjunctival inflammation of eyes and dermatitis.
Health HazardBeryllium and its compounds are highly toxic substances. Beryllium can affect all organ systems, although the primary organ involved is the lung. Beryllium causes systemic disease by inhalation and can distribute itself widely throughout the body after absorption from the lungs. The signs and symptoms of chronic beryllium poisoning include, cough, chest pain, fatigue, dyspnea, anorexia, cyanosis, cubbing, hepatomegaly, splenomegaly with complications of cardiac failure, renal stone, and pneumothorax. Little beryllium is absorbed from the gastrointestinal tract. Beryllium can cause skin irritation and its traumatic introduction into subcutaneous tissue can cause local irritation and granuloma formation. Beryllium is a potent inhibitor of various enzymes of phosphate metabolism, particularly of alkaline phosphatase. The health hazards of beryllium are almost exclusively confi ned to inhalation exposure and skin contactBeryllium and its salts are toxic and should be handled with the greatest of care. Beryllium and its compounds should not be tasted to verify its sweetish nature. Ingestion and breathing of beryllium is harmful. Acute exposures to high levels of beryllium cause mild infl ammation of the nasal mucous membranes and pharynx, rhinitis and pharyngitis, tracheo-bronchitis, and pneumonitis. The symptoms of acute pneumonitis are cough, respiratory distress, substernal discomfort or pain, loss of appetite, weakness, tiredness, chest pain, and cyanosis.Beryllium can be very harmful when humans breathe it in, because it can damage the lungs and cause pneumonia. The most commonly known effect of beryllium is called berylliosis, a dangerous and persistent lung disorder that can also damage other organs, such as the heart. In about 20% of all cases, people die of this disease. Breathing in beryllium in the workplace causes berylliosis. People that have weakened immune systems are most susceptible to this disease. Beryllium can also cause allergic reactions with people that are hypersensitive to this chemical and cause chronic beryllium disease (CBD). The symptoms are weakness, tiredness, and breathing problems. Some people that suffer from CBD will develop anorexia and blueness of hands and feet. Sometimes, people can even be in such a serious condition that CBD can cause their death. Next to causing berylliosis and CBD, beryllium can also increase the chances of developing cancer and DNA damage. Chronic beryllium disease is a pulmonary and systemic granulomatous disease caused by inhalation of beryllium. The latency of the disease can be from 1 to 30 years, most commonly occurring 10–15 years after fi rst exposure. From the reported use pattern of beryllium, it can be deduced that toxicologically relevant exposure to beryllium is largelyconfi ned to the workplace. Only a few exposure situations have been reported for the general population
Potential ExposureBeryllium is used extensively in manufacturing electrical components, chemicals, ceramics, nuclear reactors; in the aerospace industry; and X-ray tubes. Beryllium and Compounds 423 A number of alloys are produced in which beryllium is added to yield greater tensile strength, electrical conductivity, and resistance to corrosion and fatigue. The metal is used as a neutron reflector in high-flux test reactors. Human exposure occurs mainly through inhalation of beryllium dust or fumes by beryllium ore miners, beryllium alloy makers and fabricators; phosphor manufacturers; ceramic workers; missile technicians; nuclear reactor workers; electric and electronic equipment workers; and jewelers. The major source of beryllium exposure of the general population is thought to be the burning of coal. Approximately 250,000 pounds of beryllium is released from coal and oil-fired burners. EPA estimates the total release of beryllium to the atmosphere from point sources is approximately 5500 pounds per year. The principal emissions are from beryllium copper alloy production. Approximately 721,000 persons living within 12.5 mi (20 km) of point sources are exposed to small amounts of beryllium (median concentration 0.005 μ/m3). Levels of beryllium have been reported in drinking water supplies and in small amounts in food.
First aidMove victim to fresh air. Call 911 or emergency medical service. Give artificial respiration if victim is not breathing. Do not use mouth-to-mouth method if victim ingested or inhaled the substance; give artificial respiration with the aid of a pocket mask equipped with a one-way valve or other proper respiratory medical device. Administer oxygen if breathing is difficult. Remove and isolate contaminated clothing and shoes. In case of contact with substance, immediately flush skin or eyes with running water for at least 20 minutes. For minor skin contact, avoid spreading material on unaffected skin. Keep victim warm and quiet. Effects of exposure (inhalation, ingestion or skin contact) to substance may be delayed. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. Medical observation is recommended for 24 to 48 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy.
ShippingUN1567: Beryllium powder, Hazard class: 6.1; Labels: 6.1—Poisonous material, 4.1—Flammable solid.
IncompatibilitiesBeryllium metal reacts with strong acids; alkalis (forming combustible hydrogen gas), oxidizable materials. Forms shock sensitive mixtures with some chlorinated solvents, such as carbon tetrachloride and trichloroethylene. Incompatible with caustics, chlorinated hydrocarbons, oxidizers, molten lithium.
Waste DisposalFor beryllium (powder), waste should be converted into chemically inert oxides using incineration and particulate collection techniques. These oxides should be returned to suppliers if possible. Recovery and recycling is an alternative to disposal for beryllium scrap and pickle liquors containing beryllium.
BERYLLIUM Preparation Products And Raw materials
Preparation Products2-Hydroxy-1-naphthaldehyde
Tag:BERYLLIUM(7440-41-7) Related Product Information
BERYLLIUM POTASSIUM FLUORIDE bis(pentane-2,4-dionato-O,O')beryllium ,ACETYLACETONE BERYLLIUM(II) SALT beryllium sulphide Beryllium nitrate solution,BERYLLIUM NITRATE,Beryllium nitrate solution,BERYLLIUM NITRATE 99.99%, CA. 35WT% SOLU TION IN WATER,BERYLLIUM ICP STANDARD SOLUTION FLUKA,FO R ICP,BERYLLIUM ATOMIC SPECT. STANDARD SOL. FL UKA, IN NITRIC AC.,BERYLLIUM NITRATE 99.99%, CA. 35WT% SOLU TION IN WATER beryllium diiodide METHACRYLATE, BERYLLIUM BERYLLIUM CHLORIDE, SUBLIMED, 99%,BERYLLIUM CHLORIDE ANHYDROUS,BERYLLIUM CHLORIDE, SUBL. Beryllium aluminium silicate (Beryl) BERYLLIUM CARBONATE BERYLLIUM OXIDE, 99.99% BERYLLIUM PHOSPHATE BERYLLIUM BERYLLIUM SULFATE BERYLLIUM OXYFLUORIDE BERYLLIUM OXYFORMATE Beryllium fluoride Acetic acid,beryllium salt diethylberyllium