ChemicalBook > Product Catalog >Organic Chemistry >Hydrocarbons and derivatives >Hydrocarbon sulfonate >N-Acetylsulfanilyl chloride

N-Acetylsulfanilyl chloride

N-Acetylsulfanilyl chloride Suppliers list
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-55531817
Email: info@dakenchem.com
Products Intro: Product Name:N-Acetylsulfanilyl chloride
CAS:121-60-8
Purity:99% Package:100g,500g,1kg,5kg,10kg
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Email: info@tianfuchem.com
Products Intro: Product Name:N-Acetylsulfanilyl chloride
CAS:121-60-8
Purity:0.99 Package:25KG,5KG;1KG;500G
Company Name: Hangzhou FandaChem Co.,Ltd.
Tel: 008615858145714
Email: fandachem@gmail.com
Products Intro: Product Name:N-Acetylsulfanilyl Chloride;N-ASC
CAS:121-60-8
Purity:98.5%;99% Package:25kg/drum
Company Name: ATK CHEMICAL COMPANY LIMITED
Tel: +86 21 5161 9050/ 5187 7795
Email: ivan@atkchemical.com
Products Intro: CAS:121-60-8
Purity:98% HPLC Package:5MG;10MG;50MG;100MG,1G,5G
Company Name: Zjartschem
Tel: +86-571-8723 8903 jocelynpan@zjarts.com
Email: jocelynpan@zjarts.com
Products Intro: Product Name:N-Acetylsulfanilyl chloride
CAS:121-60-8
Purity:98% Package:500g;1kg;5kg;10kg;100kg;1000kg... Remarks:pharmaceutical intermediates

Lastest Price from N-Acetylsulfanilyl chloride manufacturers

  • N-Acetylsulfanilyl chloride
  • US $195.00 / KG
  • 2020-08-28
  • CAS:121-60-8
  • Min. Order: 1KG
  • Purity: 99%min
  • Supply Ability: 1000 Kilogram/Kilograms per Month
  • ASCORBATE OXIDASE
  • US $1.00 / kg
  • 2019-07-06
  • CAS:121-60-8
  • Min. Order: 1kg
  • Purity: 95%-99%
  • Supply Ability: 100kg
N-Acetylsulfanilyl chloride Basic information
Product Name:N-Acetylsulfanilyl chloride
Synonyms:ASC;4-ACETYLAMINO BENZENESULFONYL CHLORIDE;4-ACETAMIDOPHENYLSULFONYL CHLORIDE;4-ACETAMIDOBENZENESULFONYL CHLORIDE;4-ACETAMIDOBENZENESULPHONYL CHLORIDE;-(acetylamino)benzenesulfonylchloride;4-(acetylamino)-benzenesulfonylchlorid;4'-(Chlorosulfonyl)acetanilide
CAS:121-60-8
MF:C8H8ClNO3S
MW:233.67
EINECS:204-485-1
Product Categories:Amines;Aromatics;Sulfonyl Chlorides;Sulfur & Selenium Compounds
Mol File:121-60-8.mol
N-Acetylsulfanilyl chloride Structure
N-Acetylsulfanilyl chloride Chemical Properties
Melting point 142-145 °C (dec.)(lit.)
Boiling point 426.8±28.0 °C(Predicted)
density 1.2977 (rough estimate)
refractive index 1.6300 (estimate)
storage temp. -20°C
form Granular Crystalline Powder or Crystals
pka13.75±0.70(Predicted)
color White to cream-beige
Water Solubility SLIGHTLY SOLUBLE
Sensitive Moisture Sensitive
Merck 14,103
BRN 746676
CAS DataBase Reference121-60-8(CAS DataBase Reference)
NIST Chemistry ReferenceP-acetamidobenzene sulfonyl chloride(121-60-8)
EPA Substance Registry SystemBenzenesulfonyl chloride, 4-(acetylamino)- (121-60-8)
Safety Information
Hazard Codes C
Risk Statements 22-34-37
Safety Statements 26-36/37/39-45-28B
RIDADR UN 3261 8/PG 2
WGK Germany 3
RTECS DB8837500
9-21
TSCA Yes
HazardClass 8
PackingGroup II
HS Code 29242995
Hazardous Substances Data121-60-8(Hazardous Substances Data)
ToxicityLD50 oral in rat: > 3200mg/kg
MSDS Information
ProviderLanguage
4-Acetamidobenzenesulfonyl chloride English
SigmaAldrich English
ACROS English
ALFA English
N-Acetylsulfanilyl chloride Usage And Synthesis
Chemical PropertiesOFF-WHITE TO SLIGHTLY GREY GRANULAR CRYST. POWDER
UsesA sulfanilamide derivative of Chitosan
UsesIntermediate in the preparation of sulfanilamide and its derivatives.
Biotechnological ProductionAfter more than three decades of strain and process optimization, the 2KGA fermentation by K. vulgare has reached a performance level that makes it increasingly difficult to achieve further cost-relevant improvements. Instead, opportunities can be seen in the succeeding step of 2KGA rearrangement to ascorbic acid, which still follows the same concept as laid out in the 1930s by Reichstein and Grüssner. This chemical step contributes significantly to the overall process costs. A process Industrial Production of L-Ascorbic Acid (Vitamin C) and D-Isoascorbic Acid 171 concept that could convert sorbitol directly to ascorbic acid would therefore be most attractive. In theory, this could build on the established 2KGA fermentation with an enzyme-catalyzed 2KGA to Asc rearrangement (2,6-hemiacetal to 1,4- lactone) as extension. Ab initio energy calculations as well as experimental results (own unpublished results) indicate that in aqueous environment, Asc is thermodynamically far more stable than 2KGA and (nearly) quantitative conversion should be possible. However, no enzyme efficiently catalyzing this reaction has so far been identified. The few publications of enzyme catalysis for this reaction so far shows only trace activity and no significant improvements have been reported. 2KGA may represent a kinetic trap in an aqueous environment and biotechnological reaction pathways all the way to Asc may need to avoid 2KGA. Accordingly, 2KGA is also not part of natural biosynthetic routes, where Asc formation directly results from the oxidation of precursor molecules with appropriately preformed 1,4-lactone linkage (L-gulono-1,4-lactone in animals, L-galactono-1,4-lactone in plants). Enzymes converting L-gulono-1,4-lactone to Asc are also known from bacteria, even from Ketogulonicigenium. The biochemical description of the Ketogulonicigenium enzyme indicates that it belongs to the family of heterotrimeric periplasmic flavohemoproteins, of which several can be found in the published Ketogulonicigenium genomes. Besides sharing the same FAD cofactor, these enzymes bear no similarity to the mammalian gulono-1,4- lactone dehydrogenase. The use of these natural or nature-like Asc-forming enzymatic steps in biotechnological production processes is so far precluded by the rare nature of these L-sugar-derived lactone precursor molecules and the lack of efficient production methods for these compounds. It was, therefore, a tantalizing discovery when Asc formation directly from L-sorbosone, the intermediate of the efficient 2KGA formation route, was identified in those two species already in the focus for 2KGA production for decades: K. vulgare and G. oxydans. Besides an earlier report of L-sorbosone to Asc activity derived from plant tissue , which did not see consolidating follow-ups, the above observations are the first evidence of biological Asc formation from a molecule other than a 1,4-lactone.
Safety ProfileA poison by intraperitoneal route.Moderately toxic by ingestion. When heated todecomposition it emits toxic vapors of NOx, SOx, and Cl.
Purification MethodsCrystallise the chloride from toluene, CHCl3, or ethylene dichloride. [Beilstein 14 IV 2703.]
Tag:N-Acetylsulfanilyl chloride(121-60-8) Related Product Information
1-ETHYL-2-OXO-1,2-DIHYDROBENZO[CD]INDOLE-6-SULFONYL CHLORIDE 4-ACETAMIDO-3-CHLOROBENZENESULFONYL CHLORIDE 4-(2-OXO-PYRROLIDIN-1-YL)-BENZENESULFONYL CHLORIDE 2-PROPOXY-4-(N-PHTHALIMIDINYL)BENZENE- 4-acetamido-3-fluorobenzene-1-sulfonyl chloride 4-N-ACETYLBENZENE-D5-SULFONYL CHLORIDE 3-CHLORO-4-(1,3-DIOXO-2-AZASPIRO[4.4]NON-2-YL)BENZENESULFONYL CHLORIDE Acetaminophen 4-Chlorobenzenesulfonyl chloride N-Acetylsulfanilyl chloride Potassium chloride Methylene Chloride Polyvinyl chloride Sodium chloride 4-Nitrobenzenesulfonyl chloride Calcium chloride Thionyl chloride Ammonium chloride