ChemicalBook > Product Catalog >Analytical Chemistry >Standard >Volatile organic compounds (VOCs) >Pyrene


Pyrene Suppliers list
Company Name: Dayang Chem (Hangzhou) Co.,Ltd.
Tel: +86-571-88938639 17705817739
Products Intro: Product Name:Pyrene
Purity:0.95&0.99 Package:0.1KG;1KG;1000KG Remarks:High quality
Company Name: Springchem New Material Technology Co.,Limited
Tel: +86-021-62885108 +8613917661608
Products Intro: Product Name:Pyrene
Purity:99%,99.5% Package:1kg,10kg,25kg
Company Name: Capot Chemical Co.,Ltd.
Tel: +86-571-85586718 +86(0)13336195806
Products Intro: Product Name:pyrene
Purity:98% (Min,HPLC) Package:100g;1kg;5kg,10kg,25kg,50kg
Tel: +86 21 5161 9050/ 5187 7795
Products Intro: CAS:129-00-0
Purity:98% HPLC Package:5G;10G;25G;50G;100G;250G;1KG
Company Name: career henan chemical co
Tel: +86-0371-55982848
Products Intro: Product Name:Pyrene
Purity:98% Package:1KG;1USD

Pyrene manufacturers

  • Pyrene
  • $50.00-100.00 / KG
  • 2022-01-14
  • CAS:129-00-0
  • Min. Order: 5KG
  • Purity: >99%
  • Supply Ability: 20tons
  • pyrene
  • $200.00 / KG
  • 2021-10-14
  • CAS:129-00-0
  • Min. Order: 1KG
  • Purity: 99.99%
  • Supply Ability: 20 tons
  • Pyrene
  • $15.00-10.00 / KG
  • 2021-07-13
  • CAS:129-00-0
  • Min. Order: 1KG
  • Purity: 99%+ HPLC
  • Supply Ability: Monthly supply of 1 ton
Pyrene Basic information
Coal-tar chemical industrial products Probing agent for determination of the fluidity of membrane lipid Chemical Properties Uses Production method
Product Name:Pyrene
Synonyms:Pyrene (purity);Pyrenepract;PYRENE, FOR FLUORESCENCE;PYRENE, 1X1ML, CH2CL2, 200UG/ML;41164, Pyrene (purity);PYRENE, 5000MG, NEAT;PYRENE-D10, 25MG, NEAT;PYRENE, 1X1ML, MEOH, 1000UG/ML
Product Categories:Pyrenes;Organics;Aromatic Compounds;PAH
Mol File:129-00-0.mol
Pyrene Structure
Pyrene Chemical Properties
Melting point 148 °C
Boiling point 393 °C
density 1.271
vapor pressure 180 at 25 °C (extrapolated from vapor pressures determined at higher temperatures, Tesconi andYalkowsky, 1998)
refractive index 1.8520 (estimate)
Fp 210 °C
storage temp. room temp
solubility ethanol: soluble
pka>15 (Christensen et al., 1975)
form crystalline
Specific Gravity1.271
color Pale yellow to yellow-greenish
Water Solubility almost insoluble
Merck 14,7963
BRN 1307225
Henry's Law Constant0.490 at 25 °C (thermodynamic method-GC/UV spectrophotometry, Altschuh et al., 1999)
CAS DataBase Reference129-00-0(CAS DataBase Reference)
NIST Chemistry ReferencePyrene(129-00-0)
IARC3 (Vol. Sup 7, 92) 2010
EPA Substance Registry SystemPyrene (129-00-0)
Safety Information
Hazard Codes N,T+,T,F,Xn
Risk Statements 50/53-36/37/38-26-39/23/24/25-23/24/25-11-63-43-45-67-65-38-51/53-52/53-40
Safety Statements 60-61-45-36/37-28A-22-16-7-24/25-23-53-62-26
RIDADR UN 3077 9/PG 3
WGK Germany 2
RTECS UR2450000
HazardClass 6.1(b)
PackingGroup III
HS Code 29349990
Hazardous Substances Data129-00-0(Hazardous Substances Data)
ToxicityLD50 orally in Rabbit: 2700 mg/kg
MSDS Information
ACROS English
SigmaAldrich English
ALFA English
Pyrene Usage And Synthesis
Coal-tar chemical industrial productsPyrene is one of the processing products of coal tar with the content in the coal tar being about 0.6 to 1.2% and is mainly concentrated in the anthracene oil fraction. Pyrene is a kind of solid aromatic compound with its molecule comprising of four benzene rings connected with each other. Pyrene has its molecular formula of C16H10, molecular weight of 202.26, melting point of 150 °C, boiling point of 393 °C and the density of 1.277g/cm3. Pyrene appears as pale yellow crystalline monoclinic tablets, insoluble in water and easily soluble in benzene, toluene, carbon disulfide, ether and other organic solvents. Pyrene is carcinogenic and can be converted to mutagenic 1-nitro-pyrene under the effect of nitrogen dioxide. The position 1 and position 6 of pyrene can easily react with electrophilic reagent as well as have oxidation and hydrogenation reaction. Pyrene can also have halogenation, nitration and sulfonation; mono-substitution occurs at the 3-position, di-substitution includes 3, 10 and 3, 8-position with 3, 10 being more frequent. Its oxidation can generate 3, 10-quinones and 3, 8-quinones which can further oxidized to generate 1, 4, 5, 8-naphthalene tetracarboxylic acid.
Pyrene can be used in the production of dyes such as indanthrone dyes and anthraquinone vat dyes. The extraction method of is: take the residuum or bitumen distillate oil produced from the distillation of the anthracene fractions as the raw material, perform distillation under reduced pressure, take the 390~400 ℃ fraction which contains about 40% of pyrene fraction, then use 25% of the coal tar solvent oil and 75% ethanol mixed solvent (the volume of the solvent: pyrene fraction: 1:12), and recrystallized for several times until qualified products are obtained.

Pyrene belongs to low toxicity compounds and has mild irritation effect on the skin, eyes and upper respiratory tract. Long-term inhalation can cause aglobulism and mild liver and kidney damage. Long-term exposure upon 3mg/m3~5mg/m3 can cause headaches, fatigue, loss of appetite, and being prone to excitable.
The above information is edited by the chemicalbook of Dai Xiongfeng.
Probing agent for determination of the fluidity of membrane lipidPyrene is a commonly used probe for determination of the fluidity of the membrane lipid with high quantum yield but shorter excited lifetime than DPH (1, 6-diphenyl a 1, 3, 5-triene), so it is not sensitive enough for determination of the slight change in the lipid fluidity and is suitable for system of greater mobility. The excitation wavelength of pyrene is 342nm and the emission wavelength is 383nm with the excitation and emission spectra overlapping significantly with each other. Pyrene mainly bound to the hydrocarbon chain of the membrane lipid. Once a monomer formed via the binding between a pyrene molecule to lipid molecule had been excited by light, it move and be close to another pyrene molecule which has not been excited yet via lateral diffusion motion, forming collision compounds namely excitation dimer. The efficiency for the formation of the excitation dimer depends on the concentration of pyrene binding to the membrane lipid as well as the viscosity of the medium surrounding the pyrene. When the concentration and temperature of pyrene becomes stable, the ratio of the fluorescence intensity between monomer and dimer will decrease with the increasing viscosity of the medium surrounding the pyrene, namely pyrene, based on the ratio of the fluorescence of dimer to monomer, can reflect the lateral diffusion rate of the lipid molecule. High medium viscosity will cause small lateral diffusion rate and small liquidity.
Reference: Editor: Huishan Liu, Binxue Liu & Zedai Fang; Reviwer: Shuyun Xu & Chuanggeng Ma; English-Chinese dictionary of pharmacology.
Chemical PropertiesIt appears as light yellow monoclinic crystal. It is insoluble in water, easily soluble in ether, carbon disulfide, benzene and toluene.
UsesIt can be used as raw material of organic synthesis. For example, it can be used for production of 1, 4, 5, 8-naphthalene tetracarboxylic acid via oxidation. It can be applied to dyes, synthetic resins and plastics; it can also be used for the manufacturing of vat dye Brilliant Orange GR and various kinds of other dyes. Moreover, it can also be used for the manufacturing of pesticides and plasticizers.
Production methodPyrene is mainly presented in the distillates of coal tar pitch. Send the asphalt for vacuum distillation under medium temperature; at the same time, directly send a small amount of the overheated steam to the distillation vessel; take the narrow fraction of pyrene and then use the mixed solution of solvent oil and ethanol or a mixed solution of benzene and solvent oil for recrystallization to obtain industrial pyrene with purity of 95%.
Chemical Propertiespale yellow to yellow-greenish crystals or chunks
Chemical PropertiesPyrene is a colorless crystalline solid when pure or pale yellow plates (impure). Polycyclic aromatic hydrocarbons (PAHs) are compounds containing multiple benzene rings and are also called polynuclear aromatic hydrocarbons. Solids and solutions have a Blue fluores- cence (Merck Index).
Physical propertiesColorless solid (tetracene impurities impart a yellow color) or monoclinic prisms crystallized from alcohol. Solutions have a slight blue fluorescence.
UsesPyrene occurs in coal tar. Also obtained by the destructive hydrogenation of hard coal. Found in wastewater in aquatic environments, and possesses genotoxic characteristics relating to estrogenic/andr ogenic, antiestrogenic and antiandrogenic activity.
UsesPyrene and its derivatives are used commercially to make?dyes?and dye precursors, for example?pyranine?and naphthalene-1,4,5,8-tetracarboxylic acid. It is used as a probe to determine solvent environments and fluorescence spectroscopy.
Production MethodsThere is no commercial production or known use for this compound. Pyrene has been used as starting material for the synthesis of benzo[a]pyrene.
DefinitionA condensed ring hydro- carbon.
DefinitionA solid aromatic compound whose molecules consist of four benzene rings joined together. It is carcinogenic.
General DescriptionColorless solid, solid and solutions have a slight blue fluorescence. Used in biochemical research.
Air & Water ReactionsInsoluble in water.
Reactivity ProfilePyrene reacts with nitrogen oxides to form nitro derivatives. Pyrene also reacts with 70% nitric acid.
HazardA questionable carcinogen, absorbed by skin.
Health HazardPyrene is a carcinogenic agent and is absorbed by the skin. It is a skin irritant, a suspected mutagen, and an equivocal tumor-causing agent. Workers exposed to 3 to 5 mg/m3 of Pyrene exhibited some teratogenic effects. Pyrene is a polycyclic aromatic hydrocarbon (PAH). The acute toxicity of pure PAHs appears low when administered orally or dermally to rats or mice. Human exposure to PAHs is almost exclusively via the gastrointestinal and respiratory tracts, and approximately 99 percent is ingested in the diet. Despite the high concentrations of Pyrene to which humans may be exposed through food, there is currently little information available to implicate diet-derived PAHs as the cause of serious health effects.
Health HazardInhalation of its vapors or ingestion causedirritation of the eyes, excitement, and musclecontraction in rats and mice. An oral LD50value in mice has been reported as 800 mg/kg.Studies on experimental animals do not giveevidence of carcinogenicity. Skin tumors,however, have been reported in mice (NIOSH1986). Pyrene tested negative to a histidinereversion–Ames test and other mutagenictests.
Fire HazardWhen heated to decomposition, Pyrene emits acrid smoke and fumes.
Safety ProfilePoison by inhalation. Moderately toxic by ingestion and intraperitoneal routes. A sh irritant. Questionable carcinogen with experimental tumorigenic data. Human mutation data reported. When heated to decomposition it emits acrid smoke and irritating fumes.
Potential ExposurePyrene is used as an industrial chemi- cal and in biochemical research.
CarcinogenicityPyrene was inactive as a tumor initiator. Based on inadequate animal data and no human data, the IARC classified pyrene as group 3, not classifiable as to its carcinogenicity to humans, and IRIS classified pyrene as a class D compound. Pyrene is present as a major component of the total content of PAHs in the environment. Exposure occurs primarily through tobacco smoke, inhalation of polluted air, and by ingestion of food and water.
SourceDetected in groundwater beneath a former coal gasification plant in Seattle, WA at a concentration of 180 μg/L (ASTR, 1995). Detected in 8 diesel fuels at concentrations ranging from 0.16 to 24 mg/L with a mean value of 5.54 mg/L (Westerholm and Li, 1994). Identified in Kuwait and South Louisiana crude oils at concentrations of 4.5 and 3.5 ppm, respectively (Pancirov and Brown, 1975).
Based on laboratory analysis of 7 coal tar samples, pyrene concentrations ranged from 900 to 18,000 ppm (EPRI, 1990). Detected in 1-yr aged coal tar film and bulk coal tar at concentrations of 2,700 and 2,900 mg/kg, respectively (Nelson et al., 1996). Lehmann et al. (1984) reported a pyrene concentration of 125 mg/g in a commercial anthracene oil. Identified in high-temperature coal tar pitches used in electrodes at concentrations ranging from 4,500 to 34,900 mg/kg (Arrendale and Rogers, 1981). Lee et al. (1992a) equilibrated eight coal tars with distilled water at 25 °C. The maximum concentration pyrene observed in the aqueous phase is 0.1 mg/L.
Nine commercially available creosote samples contained pyrene at concentrations ranging from 31,000 to 100,000 mg/kg (Kohler et al., 2000). Also detected in asphalt fumes at an average concentration of 140.21 ng/m3 (Wang et al., 2001).
Schauer et al. (1999) reported pyrene in diesel fuel at a concentration of 64 μg/g and in a dieselpowered medium-duty truck exhaust at an emission rate of 71.9 μg/km.
California Phase II reformulated gasoline contained pyrene at a concentration of 3.38 g/kg. Gasphase tailpipe emission rates from gasoline-powered automobiles with and without catalytic converters were approximately 4.28 and 160 μg/km, respectively (Schauer et al., 2002). Schauer et al. (2001) measured organic compound emission rates for volatile organic compounds, gas-phase semi-volatile organic compounds, and particle-phase organic compounds from the residential (fireplace) combustion of pine, oak, and eucalyptus. The respective gas-phase and particle-phase emission rates of pyrene were 1.87 and 3.78 mg/kg of pine burned, 2.40 and 1.23 mg/kg of oak burned, and 2.70 and 0.585 mg/kg of eucalyptus burned.
Under atmospheric conditions, a low rank coal (0.5–1 mm particle size) from Spain was burned in a fluidized bed reactor at seven different temperatures (50 °C increments) beginning at 650 °C. The combustion experiment was also conducted at different amounts of excess oxygen (5 to 40%) and different flow rates (700 to 1,100 L/h). At 20% excess oxygen and a flow rate of 860 L/h, the amount of pyrene emitted ranged from 29.9 ng/kg at 700 °C to 402.9 ng/kg at 750 °C. The greatest amount of PAHs emitted were observed at 750 °C (Mastral et al., 1999).
Drinking water standard: No MCLGs or MCLs have been proposed by the U.S. EPA (2000).
Environmental fateBiological. When pyrene was statically incubated in the dark at 25 °C with yeast extract and settled domestic wastewater inoculum, complete degradation was demonstrated at the 5 mg/L substrate concentration after 2 wk. At a substrate concentration of 10 mg/L, however, only 11 and 2% losses were observed after 7 and 14 d, respectively (Tabak et al., 1981).
Soil. The reported half-lives for pyrene in a Kidman sandy loam and McLaurin sandy loam are 260 and 199 d, respectively (Park et al., 1990).
Plant. Hückelhoven et al. (1997) studied the metabolism of pyrene by suspended plant cell cultures of soybean, wheat, jimsonweed, and purple foxglove. Soluble metabolites were only detected in foxglove and wheat. Approximately 90% of pyrene was transformed in wheat. In foxglove, 1-hydroxypyrene methyl ether was identified as the main metabolite but in wheat, the metabolites were identified as conjugates of 1-hydroxypyrene.
Photolytic. Adsorption onto garden soil for 10 d at 32 °C and irradiated with UV light produced 1,1′- bipyrene, 1,6-pyrenedione, 1,8-pyrenedione, and three unidentified compounds (Fatiadi, 1967). Microbial degradation by Mycobacterium sp. yielded the following ring-fission products: 4-phenanthroic acid, 4-hydroxyperinaphthenone, cinnamic acid, and phthalic acid. The compounds pyrenol and the cis- and trans-4,5-dihydrodiols of pyrene were identified as ring-oxidation products (Heitkamp et al., 1988).
Chemical/Physical. At room temperature, concentrated sulfuric acid will react with pyrene to form a mixture of disulfonic acids. In addition, an atmosphere containing 10% sulfur dioxide transformed pyrene into many sulfur compounds, including pyrene-1-sulfonic acid and pyrenedisulfonic acid (Nielsen et al., 1983).
ShippingUN3077 Environmentally hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9-Miscellaneous haz- ardous material, Technical Name Required.
Purification MethodsCrystallise pyrene from EtOH, glacial acetic acid, *benzene or toluene. Purify it also by chromatography of CCl4 solutions on alumina, with *benzene or n-hexane as eluent. [Backer & Whitten J Phys Chem 91 865 1987.] It can also be zone refined and purified by sublimation. Marvel and Anderson [J Am Chem Soc 76 5434 1954] refluxed pyrene (35g) in toluene (400mL) with maleic anhydride (5g) for 4days, then added 150mL of aqueous 5% KOH and refluxed for 5hours with occasional shaking. The toluene layer was separated, washed thoroughly with H2O, concentrated to about 100mL and allowed to cool. Crystalline pyrene was filtered off and recrystallised three times from EtOH or acetonitrile. [Chu & Thomas J Am Chem Soc 108 6270 1986, Russell et al. Anal Chem 50 2961 1986.] The material is free from anthracene derivatives. Another purification step involves passage of pyrene in cyclohexane through a column of silica gel. It can be sublimed in a vacuum and zone refined. The picrate has m 224o. [Kano et al. J Phys Chem 89 3748 1985, Beilstein 5 IV 2467.]
IncompatibilitiesPyrene Dust may form explosive mixture with air. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Pyrene reacts with nitrogen oxides to form nitro derivatives. It also reacts with 70% nitric acid
Waste DisposalDissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed .
Tag:Pyrene(129-00-0) Related Product Information