ChemicalBook > Product Catalog >Biochemical Engineering >Fat medicines >Oleic acid

Oleic acid

Oleic acid Suppliers list
Company Name: Shanghai Zheyan Biotech Co., Ltd.
Tel: 18017610038
Email: zheyansh@163.com
Products Intro: Product Name:cis-9-Octadecenoic acid
CAS:112-80-1
Purity:GC>=98% Package:0.1ml
Company Name: Capot Chemical Co.,Ltd.
Tel: +86 (0)571-855 867 18
Email: sales@capotchem.com
Products Intro: Product Name:Oleic acid
CAS:112-80-1
Purity:98%(Min,HPLC) Package:100g;1kg;5kg,10kg,25kg,50kg
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-55531817
Email: info@dakenchem.com
Products Intro: Product Name:Oleic acid
CAS:112-80-1
Purity:99% Package:100g,500g,1KG,10KG,100KG
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Email: info@tianfuchem.com
Products Intro: CAS:112-80-1
Purity:99% Package:500G;1KG;5KG;25KG
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Email: sales@mainchem.com
Products Intro: Product Name:cis-9-Octadecenoic acid
CAS:112-80-1

Lastest Price from Oleic acid manufacturers

  • Oleic acid
  • US $2.00 / KG
  • 2018-08-11
  • CAS:112-80-1
  • Min. Order: 1KG
  • Purity: 98%
  • Supply Ability: 10000kg
Oleic acid Chemical Properties
Melting point 13-14 °C(lit.)
Boiling point 360 °C
density 0.89 g/mL at 25 °C(lit.)
vapor density 1.03 (vs air)
vapor pressure 52 mm Hg ( 37 °C)
refractive index n20/D 1.377
FEMA 2815 | OLEIC ACID
Fp 133 °F
storage temp. 2-8°C
solubility Miscible with ethanol, ether, acetone, chloroform, dimethyl formamide and dimethyl sulfoxide.
form Liquid
pkapKa 5.35(H2O,t =25) (Uncertain)
color Colorless to pale yellow
Water Solubility negligible
Sensitive Air Sensitive
Merck 14,6828
BRN 1726542
Hydrophilic-Lipophilic Balance (HLB)1
Stability:Stable. Combustible. Incompatible with strong oxidizing agents, aluminium.
CAS DataBase Reference112-80-1(CAS DataBase Reference)
NIST Chemistry Reference9-Octadecenoic acid (Z)-(112-80-1)
EPA Substance Registry System9-Octadecenoic acid (9Z)-(112-80-1)
Safety Information
Hazard Codes T,Xi
Risk Statements 23/24/25-34-40-43-36/37/38-38
Safety Statements 36/37-37/39-26-36-36/37/39
RIDADR UN 1198 3/PG 3
WGK Germany 2
RTECS LP8925000
10
TSCA Yes
Hazardous Substances Data112-80-1(Hazardous Substances Data)
ToxicityLD50 i.v. in mice: 230±18 mg/kg (Or, Wretlind)
MSDS Information
ProviderLanguage
cis-9-Octadecenoic acid English
SigmaAldrich English
ACROS English
ALFA English
Oleic acid Usage And Synthesis
Unsaturated fatty acidOleic acid is a kind of unsaturated fatty acid with its molecular structure containing a carbon-carbon double bond, being the fatty acid that makes olein. It is one of the most extensive natural unsaturated fatty acids. Oil lipid hydrolysis can lead to oleic acid with the chemical formula being CH3 (CH2) 7CH = CH (CH2) 7 • COOH. The glyceride of the oleic acid is one of the main ingredients of olive oil, palm oil, lard and other animal and vegetable oils. Its industrial products often contain 7~12% saturated fatty acids (palmitic acid, stearic acid) and a small amount of other unsaturated fatty acids (linoleic acid). It is colorless oily liquid with the specific gravity being 0.895 (25/25 ℃), freezing point of 4 ℃, the boiling point of 286 °C (13,332 Pa), and the refractive index of 1.463 (18 ° C). Its iodine value is 89.9 and its acidic value is 198.6. It is insoluble in water, but soluble in alcohol, benzene, chloroform, ether and other volatile oil or fixed oil. Upon exposure to air, especially when containing some impurities, it is susceptible to oxidation with its color turning into yellow or brown, accompanied with rancid odor. At normal pressure, it will be subject to decomposition 80~100 °C. It is manufactured through the saponification and acidification of animal and vegetable oils. Oleic acid is an indispensable nutrient in animal food. Its lead salt, manganese salt, cobalt salt belong to paint driers; its copper salt can be used as fish net preservatives; its aluminum salt can be used as the water repellent agent of fabric as well as the thickener of some lubricants. When being epoxidized, oleic acid can produce epoxy oleate (plasticizer). Upon subjecting to oxidative cracking, it can generate azelaic acid (raw material of polyamide resin). It can be sealed. Store it on darkness.
Oleic acid exists in the animal and vegetable oil fat in large amount, being mainly in the form of glyceride. Some simple oleic esters can be applied to the textile, leather, cosmetics and pharmaceutical industries. The alkali metal salt of oleic acid can be dissolved in water, being one of the main components of soap. The lead, copper, calcium, mercury, zinc and other salts of oleic acid are soluble in water. It can be used as dry lubricants, paint drying agent and waterproofing agent.
Oleic acid mainly comes from nature. Oil fat containing high content of oleic acid, after subjecting to saponification and acidification separation, can produce oleic acid. Oleic acid has cis-isomers. Natural oleic acids are all cis-structure (trans-structure oleic acid can’t be absorbed by the human body) with certain effect of softening the blood vessels. It also plays an important role in the metabolism process of human and animal. However, the oleic acid synthesized by the human body itself can’t meet the needs, so we need food intake. Thus, consumption of edible oil of high oleic acid content is healthy.
The above information is edited Xiao Nan of Chemicalbook.
Physical and chemical propertiesOleic acid, also known as cis-9-octadecenoic acid, being of chemical properties of single unsaturated carboxylic acid and is widely presented in animal and vegetable oils. For example, olive oil contains about 82.6%; peanut oil contains 60.0%; sesame oil contains 47.4%; soybean oil contains 35.5%; sunflower seed oil contains 34.0%; cottonseed oil contains 33.0%; rapeseed oil contains 23.9%; safflower oil contains 18.7%; the content in the tea oil can be as high as 83%; in animal oil: lard oil contains about 51.5%; butter contains 46.5 %; whale oil contains 34.0%; cream oil contains 18.7%; Oleic acid has a stable (α-type) and unstable (β-type) two types. At low temperature, it can appear as crystal; at high temperature, it appears as colorless transparent oily liquid with lard odor. It has a relative molecular mass of 282.47, relative density of 0.8905 (20 ℃ liquid), M.p. of 16.3 ° C (α), 13.4 ° C (β), boiling point of 286 °C (13.3 103 Pa), 225 to 226 °C(1.33 103 Pa), 203 to 205 °C (0.677 103 Pa), and 170 to 175 °C (0.267 103 to 0.400 103 Pa), the Refractive index of 1.4582 and viscosity of 25.6 mPa • s (30 ° C).
It is insoluble in water, being soluble in benzene and chloroform. It is miscible with methanol, ethanol, ether and carbon tetrachloride. Because of containing double bond, it can be easily subject to air oxidation, thus producing bad smell with the color turning yellow. Upon using nitrogen oxides, nitric acid, mercurous nitrate and sulfurous acid for treatment, it can be converted to elaidic acid. It can be converted into stearic acid upon hydrogenation. Double bond is easy to react with halogen to produce halogen stearic acid. It can be obtained through the hydrolysis of olive oil and lard oil, followed by steam distillation and crystallization or extraction for separation. Oleic acid is an excellent solvent for other oils, fatty acids and oil-soluble substances. It can be used for the manufacture of soap, lubricants, flotation agents, such as ointment and oleate.
 the vegetable oleic acid;
Fig. 1 the vegetable oleic acid;
Determination of Unsaturation degree of Oleic AcidOleic acid molecules have an unsaturated double bond with the chemical properties of single unsaturated carboxylic acid. It is capable for having addition reaction bromine. Add 2 mL of CCl4 and 0.5 mL of oleic acid to a test tube and mix. Take another test tube, put into 1 mL of CCl4, add 1 drop of bromine and shake uniformly. The CCl4 of bromine solution is dropped into the CCl4 solution of oleic acid; shake the tube and the color of bromine will recede: C17H33COOH + Br2 → C17H33Br2COOH.
Oleic acid and linoleic acidOleic acid, linoleic acid both belong to unsaturated long-chain fatty acids. Their molecules respectively contain one and two double bonds. In addition to providing animal energy, it is also indispensable nutrients. As they can’t be synthesized through fat and carbohydrate inside the animal body, it is thus called essential fatty acids. Some animals can produce linoleic acid from arachidonic acid. These two kinds of acids are mostly existed in the vegetable oil so poultry and pigs intake of vegetable oil are not lacking of it. Recently, however, a requirement for linoleic acid has been appeared in the recently poultry feeding standards because linoleic acid will finally generate EPA (eicosapentaenoic acid) in the body metabolism.
EPA is the n-6 series of fatty acids and plays an important physiological function in the body. It is the component of phospholipids composed of cell membrane. These metabolic end products started from the linoleic acid are mostly contained in fish oil. Feeding with egg chickens with fish oil containing high content of EPA, DHA can produce eggs which can reduce cholesterol after being eaten by human.
Chemical propertiesIt appears as colorless to pale yellow oily liquid. It is insoluble in water but soluble in benzene, chloroform and is miscible with alcohol and ether.
UsesGB 2760-96 defines it as a processing aid. It can be used as antifoaming agent, fragrance, binder, and a lubricant.
It can be used for the manufacture of soap, lubricants, flotation agents, ointment and oleate, being also an excellent solvent for fatty acids and oil-soluble substances.
It can be used for the precise polishing of gold, silver and other precious metals as well as polishing in electroplating industry.
It can be used as analysis reagents, solvents, lubricants and flotation agent, but also applied to the sugar processing industry
Oleic acid is an organic chemical raw material and can produce epoxidized oleic acid ester after epoxidation. It can be used as plastic plasticizer and for production of azelaic acid by oxidation. It is the raw material of polyamide resin. In addition, oleic acid can also be used as pesticide emulsifier, printing and dyeing auxiliaries, industrial solvents, metal mineral flotation agent, and release agent. Moreover, it can be used as the raw material for manufacture of carbon paper, round bead and typing wax paper. Various kinds of oleate products are also important derivatives of oleic acid. As a chemical reagent, it can be used as a chromatographic comparative sample and for biochemical research, detection of calcium, copper and magnesium, sulfur and other elements.
It can be applied to biochemical studies. It can activate the protein kinase C in the liver cells.
BenefitsOleic acid is a fatty acid found in animal and vegetable oils. Oleic acid is a mono-saturated fat generally believed to be good for one's health. Indeed, it is the chief fatty acid found in olive oil, comprising 55 to 85 percent of the important substance, which is commonly used in Mediterranean cuisine and has been hailed for its therapeutic characteristics since antiquity. Modern studies support the notion of the benefits of consuming olive oil, since evidence suggests that oleic acid helps lower levels of harmful low-density lipoproteins (LDLs) in the bloodstream, while leaving levels of beneficial high-density lipoproteins (HDLs) unchanged. Found also in significant quantities in canola, cod liver, coconut, soybean, and almond oils, oleic acid can be consumed from a variety of sources, some of which may soon contain even higher levels of the valuable fatty acid due to the efforts of genetic engineers.
Oleic acid occurs naturally in greater quantities than any other fatty acid. It is present as glycerides in most fats and oils. High concentrations of oleic acid can lower blood levels of cholesterol. It is used in the food industry to make synthetic butters and cheeses. It is also used to flavor baked goods, candy, ice cream, and sodas.
According to the American Diabetes Association, more than 25 million Americans have diabetes. In addition, 7 million have undiagnosed diabetes, and 79 million others have prediabetes. In a study published in February 2000 in the medical journal "QJM," researchers in Ireland found that diets rich in oleic acid improved the participants' fasting plasma glucose, insulin sensitivity and blood circulation. Lower fasting glucose and insulin levels, along with enhanced blood flow, suggest better diabetes control and less risk for other diseases. For millions of people with diagnosed diabetes and prediabetes, consuming foods rich in oleic acid may be beneficial in controlling the disease.
Preparation(1) extract oleic acid directly from the vegetable oil, namely, apply saponification for extraction, upon stirring, send the oil into the steam to make the temperature rise to 80~100 °C, then add alkaline solution to hydrolyze the oil fat. After hydrolysis, we can obtain mixed fatty acids. Further apply distillation and cooling so that they are separated. This method demands large labor intensity, energy consumption, alkali consumption and is generally not used.
(2) Take vegetable oil or animal oil as raw material; apply atmospheric catalytic hydrolysis for preparation of oleic acid. For the catalyst, we can also choose alkyl benzene sulfonic acid. Alternatively, we can apply intermittent pressure catalytic cracking method using zinc oxide as the catalyst at a pressure of 10.13 × 105~35.46 × 105 Pa and temperature of 150~230 °C. We can also apply continuous, backwash and high pressure lysis under the pressure of 5~5.2MPa and temperature of 260 ℃. For the catalyst, we can also use zinc oxide. This method can produce higher efficiency according to the previous two kinds, but being not suitable for oil fat of higher unsaturated degree and high content of hydroxy.
Using the above three methods, we can prepare mixed fatty acids, and then conduct separation and refinement. First apply distillation for crude fraction, and the distillation was carried out under reduced pressure (0.133 103 to 1.07 103 Pa). Maintain the distillation temperature not exceed 260 °C. The distilled fatty acid is further subject to rectification using the difference between the boiling points of the fatty acids. We can also conduct refinement using crystallization method based on the melting points of various kinds of fatty acids. We can also apply solvent extraction for refining.
(3) Synthetic oleic acid. In 1925, people had already used ethyl acetoacetate as raw material for the synthesis of oleic acid. With the development of petrochemical industry, synthetic oleic acid process has also been developed. We can prepare oleic acid from petroleum olefin.
ToxicityIt is natural fatty acids, being non-toxic.
It can be safely used in food (FDA, §172.862, 2000).
LD50: 74 g/kg (rat, oral).
Usage limitationFEMA (mg/kg): soft drinks 0.25 to 0.40, cold drinks 30, candy 3.5, baked food 25, seasoning 0.02.
Production methodOleic acid and other fatty acids together, are presented in all kinds of animal and vegetable oil fats in the form of glycerides. In animal fats, oleic acid can account for about 40-50% of the fatty acids. Its content in the vegetable oil can vary largely with the content in tea oil being as high as 83%, being 54% in peanut oil while the coconut oil only contains about 5-6%. Oleic acid is the co-product upon the production of stearic acid. The industrial stearic acid and industrial oleic acid actually both contain other fatty acids. There are many oil fats raw materials used for the production of stearic acid and oleic acid. The industry generally take mixed fat formulations, such as 30% melting beef tallow, 10% melting lard, 40% of bone oil and 20% of cottonseed oil.
In the mixed fatty acid obtained through refinement and hydrolysis of oil fat, the difference of the melting point between the saturated and unsaturated acid is large. The yield of stearic acid and oleic acid depends mainly on the oil ester formula. Under normal circumstances, cold compressing can give 30-50% oleic acid and 50-70% stearic acid. Put the animal and vegetable oils and emulsions to hydrolysis at 105 ℃; remove the stearic acid after one step of compressing. Separate out the crude oleic acid and conduct dehydration, distillation and freezing; then conduct the second time compressing to remove palmitic acid, and finally obtain the finished product through refinement and dehydration.
This method can be applied for co-production of stearic acid. For the same logic, use oleic acid for production of stearic acid will also produce oleic acid. Fixed consumption amount of raw materials: animal and vegetable oils and fats: 1950 kg/t, sulfuric acid (98%) 210kg/t.
Use oil fat containing a certain amount of oleic acid as raw materials, for example, tallow, lard, palm oil and hydrolyze out the fatty acids. Use solvent to dissolve fatty acids and cool it to remove solid fatty acids and obtain the crude oleic acid. Then further dissolve it in the solvent, cooling at low temperature to crystallize the oleic acid out.
Chemical PropertiesOleic acid, C17H33COOH, also known as red oil, elaine oil, and octadecenoic acid, is a yellowish unsaturated fatty acid with an aroma similar to lard. It is insoluble in water, but soluble in most organic solvents. Oleic acid is the main component in cooking and olive oils.It is used for making aluminum oleate, which thickens lubricating oil, and in the preparation of soaps and cosmetics.
UsesOleic acid is a monounsaturated omega-9 fatty acid. Oleic Acid is obtained by the hydrolysis of various animal and vegetable fats and oils. Oleic Acid is used as an emulsifying or solubilizing agent i n aerosol products.
Usesoleic acid is also known as omega-9. oleic acid can improve the skinpenetration abilities of a preparation’s other components. An essential fatty acid, it is obtained from various animal and vegetable fats and oils, and may be mildly irritating to the skin.
UsesOleic Acid is an unsaturated fatty acid that functions as a lubricant, binder, and defoamer.
DefinitionChEBI: An octadec-9-enoic acid in which the double bond at C-9 has Z (cis) stereochemistry.
General DescriptionColorless to pale yellow liquid with a mild odor. Floats on water.
Air & Water ReactionsKeep cis-9-Octadecenoic acid well closed; protect cis-9-Octadecenoic acid from air and light. . May form peroxides upon exposure to air. This is taken to account for an explosion that occurred, by the mixing of the acid with aluminum, [J. Chem. Educ., 1956, 36, 308]. Water Insoluble.
Reactivity Profilecis-9-Octadecenoic acid is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in cis-9-Octadecenoic acid to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.
Health HazardIndustrial use of compound involves no known hazards. Ingestion causes mild irritation of mouth and stomach. Contact with eyes or skin causes mild irritation.
Fire Hazardcis-9-Octadecenoic acid is combustible.
Safety ProfilePoison by intravenous route. Mildly toxic by ingestion. Mutation data reported. A human skin and eye irritant. Questionable carcinogen with experimental tumorigenic data. Combustible when exposed to heat or flame. To fight fire, use CO2, dry chemical. The peroxidzed acid explodes on contact with aluminum. Potentially dangerous reaction with perchloric acid + heat. When heated to decomposition it emits acrid smoke and irritating fumes.
Purification MethodsPurify the acid by fractional crystallisation from its melt, followed by molecular distillation at 10 -3mm, or by conversion to its methyl ester, the free acid can be crystallised from acetone at -40o to -45o (12mL/g). For purification by the use of lead and lithium salts, see Keffler and McLean [J Soc Chem Ind (London) 54 176T 1935]. Purification based on direct crystallisation from acetone is described by Brown and Shinowara [J Am Chem Soc 59 6 1937, pK White J Am Chem Soc 72 1857 1950]. [Beilstein 2 H 463, 2 I 198, 2 II 429, 2 III 1387, 2 IV 1641.]
Oleic acid Preparation Products And Raw materials
Preparation ProductsEmulsion oil-->C36 Dimer acid -->cmtirust agent T-708-->dacron oiling agent JD5B-2-->softener 101-->(Z)-9-Octadecenoic acid methyl ester-->Cutting liquor,synthetic-->disodium 3-[[4-[[4-amino-6(or 7)-sulphonatonaphthyl]azo]phenyl]azo]-6-[(2,4-diaminophenyl)azo]-4-hydroxynaphthalene-2-sulphonate-->defoaming agent OTD-->antirust agent T-703-->synthetic fiber oil QDC-201-->cleaner LS-->Linear Alklybezene Sulfonates-->Tween series-->High temperature levelling agent BOF-->ETHYL OLEATE-->Amino baking varnish-->Sewerage inhibitor-->Oleamide-->N-acyl glutamate potassium salt-->Glycerides, C10-18 -->Octadecylamine N-oleoyl Sarcosinate-->Linear cutting emulsified oil-->Emulsifier FM-->SORBITAN TRIOLEATE-->SORBITAN SESQUIOLEATE-->POLYETHYLENE GLYCOL MONOOLEYL ETHER-->sodium butyl 9(or 10)-(sulphonatooxy)octadecanoate -->Tween 85-->Polyethylene glycol monooleate -->Lamepon A-->Pentaerythrityl oleate-->softener qA-->2-[bis(2-hydroxyethyl)amino]ethyl stearate -->amphoteric fatliquor agent DLF-5-->TRIOLEIN-->LY 171883-->Momomer acid-->(Octadecadienoic acid) tripolymer-->Oleylamine
Raw materialsSodium hydroxide-->Sulfuric acid -->Sodium chloride-->Stearic acid-->Castor oil-->PASSION FLOWER OIL-->D-Sorbitol-->Magnesium sulfate-->Ferric oxide -->Palmitic acid-->Coconut oil-->Fatty acids, C8-10, triesters with trimethylolpropane -->SOYBEAN OIL-->D-Sorbitol-->PALM OIL-->FATTY ACID MIXTURE-->COTTONSEED OIL-->PEANUT OIL-->LARD-->Oils, animal, mixed with vegetable oil Me esters, sulfurized -->ADEPS BOVIS
Tag:Oleic acid(112-80-1) Related Product Information
Erucic Acid Linoleic acid 2-hydroxyethyl oleate GLYCERYL MONORICINOLEATE DIETHYLENE GLYCOL MONOOLEATE 1,3-DIOLEIN OLEIC ANHYDRIDE (r)-12-hydroxy-cis-9-octadecenoic acid methyl ester,Methyl 12-hydroxyoleate, Ricinoleic acid methyl ester, (R)-12-Hydroxy-cis-9-octadecenoic acid methyl ester Cholesteryl oleate GLYCERYL DIRICINOLEATE 1,2-DIOLEOYL-RAC-GLYCEROL O-ACETYLRICINOLEIC ACID METHYL ESTER DIBUTYL TIN DIOLEATE PROPYLENE GLYCOL MONOOLEATE ETHYL OLEATE (r)-12-hydroxy-cis-9-octadecenoic acid ethyl ester,Ricinoleic acid ethyl ester, (R)-12-Hydroxy-cis-9-octadecenoic acid ethyl ester NEOPENTYL GLYCOL DIRICINOLEATE CIS-9-OCTADECENOIC ACID SODIUM SALT,Oleic acid, sodium salt, 65-90% oleic C18,OLEIC ACID SODIUM,OLEIC ACID SODIUM 95%,cis-9-Octadecenoic acid sodium salt, Oleic acid sodium salt