ChemicalBook > Product Catalog >Inorganic chemistry >Elementary substance >Lithium

Lithium

Lithium Suppliers list
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Email: sales@mainchem.com
Products Intro: Product Name:Litium
CAS:7439-93-2
Company Name: career henan chemical co
Tel: +86-371-86658258
Email: sales@coreychem.com
Products Intro: Product Name:Lithium
CAS:7439-93-2
Purity:95%-99% Package:1kg;1USD
Company Name: MINS GROUP CO.,LIMITED  Gold
Tel: 18653327685
Email: yuan19870503@126.com
Products Intro: Product Name:LithiuM,LithiuM ignot
CAS:7439-93-2
Purity:99%,99.9%% Package:1kg
Company Name: Shandong Ono Chemical Co., Ltd.  Gold
Tel: 0539-6362799(To 20)
Email: 861669111@qq.com
Products Intro: CAS:7439-93-2
Purity:99% Package:25g;100g;500g;1kg;25kg
Company Name: J & K SCIENTIFIC LTD.  
Tel: 400-666-7788 +86-10-82848833
Email: jkinfo@jkchemical.com;market6@jkchemical.com
Products Intro: Product Name:Lithium, wire, diameter 3.2 mm, 99+%
CAS:7439-93-2
Purity:99+% Package:50GR, 250GR

Lastest Price from Lithium manufacturers

  • Lithium
  • US $1.00 / kg
  • 2018-12-19
  • CAS:7439-93-2
  • Min. Order: 1kg
  • Purity: 95%-99%
  • Supply Ability: 10kg
Lithium Chemical Properties
Melting point 180 °C(lit.)
Boiling point 1342 °C(lit.)
density 0.534 g/mL at 25 °C(lit.)
vapor pressure 1 hPa (723 °C)
storage temp. water-free area
form wire
color Silvery
resistivity9.446 μΩ-cm, 20°C
Water Solubility REACTS
Sensitive air sensitive, moisture sensitive
Merck 13,5542
Stability:Stability Stable, but reacts violently with water. Store under oil.
CAS DataBase Reference7439-93-2(CAS DataBase Reference)
NIST Chemistry ReferenceLithium(7439-93-2)
EPA Substance Registry SystemLithium(7439-93-2)
Safety Information
Hazard Codes Xi,C,F
Risk Statements 36/38-34-14/15-23
Safety Statements 8-43-45-43C-36/37/39-26
RIDADR UN 3264 8/PG 3
WGK Germany 2
RTECS OJ5540000
10
TSCA Yes
HS Code 2805 19 90
HazardClass 4.3
PackingGroup I
Hazardous Substances Data7439-93-2(Hazardous Substances Data)
MSDS Information
ProviderLanguage
ACROS English
SigmaAldrich English
ALFA English
Lithium Usage And Synthesis
IntroductionLithium was first discovered in 1817 by Arfvedsen in its silicoaluminate mineral, petalite. However, the metal first was isolated from its mineral by Bunsen and Matthiesen in 1855. Lithium is distributed widely in nature. Its concentration in the earth’s crust is 20 mg/kg, and in seawater is 0.18mg/L. It is found in many chloride brines at varying but significant amounts.
The metal has numerous industrial applications. It is used to make highenergy lithium batteries. Lithium and its aluminum alloys are used as anodes in non-aqueous solid-state batteries. Also, many of its salts are used as electrolytes in these batteries. Another major application is in metallurgy. Lithium is alloyed with lead, magnesium, aluminum and other metals. Its alloy Bahnmetall is used for wheel bearings in railroad cars, and its magnesium alloy is used in aerospace vehicles. Probably the most important applications of lithium are in preparative chemistry. It is the starting material to prepare lithium hydride, amide, nitride, alkyls and aryls. Lithium hydrides are effective reducing agents. The alkyls are used in organic syntheses.
Physical PropertiesSoft silvery-white metal; body-centered cubic structure; density 0.531 g/cm3; burns with a carmine-red flame, evolving dense white fumes; melts at 180.54°C; vaporizes at 1,342°C; vapor pressure 1 torr at 745°C and 10 torr at 890°C; electrical resistivity 8.55 microhm-cm at 0°C and 12.7 microhm-cm at 100°C; viscosity 0.562 centipoise at 200°C and 0.402 centipoise at 400°C; reacts with water; soluble in liquid ammonia forming a blue solution.
ProductionLithium is obtained primarily from its ore, spodumene. Another important source is natural brine found in many surface and ground waters, from which the metal also is produced commercially.
ReactionsLithium metal is highly reactive but less so than other alkali metals. Its chemical properties, however, are more like those of the alkaline earth metals. At ordinary temperatures, lithium does not react with dry oxygen.
However, it reacts above 100°C, forming lithium oxide, Li2O:
The metal ignites in air near its melting point, burning with intense white flame, forming Li2O.
Lithium reacts with water forming lithium hydroxide with evolution of hydrogen:
2Li + 2H2O → 2LiOH + H2
The reaction is violent when lithium metal is in finely divided state. Lithium reacts violently with dilute acids, liberating hydrogen:
Li + 2HCl → LiCl + H2
Reaction with cold concentrated sulfuric acid is slow.
The metal dissolves in liquid ammonia, forming a blue solution, lithium amide, LiNH2:
2Li + 2NH3 → 2LiNH2 + H2
The same product also is obtained from ammonia gas.
Unlike other alkali metals, lithium reacts with nitrogen in the presence of moisture at ordinary temperatures, forming the black lithium nitride, Li3N: 6Li + N2 → 2Li3N
The above reaction is exothermic.
Lithium reacts with hydrogen at red heat forming lithium hydride:
Reactions with sulfur and selenium in liquid ammonia yield lithium sulfide and selenide, respectively:
The metal combines with chlorine and other halogens, forming their halides:
Li + Cl2 → 2LiCl
When heated with carbon at 800°C, the product is lithium carbide:
2Li + 2C→Li2C2
2Li + S→Li2S
2Li + H2→2LiH
Li + O2→2Li2O
The metal reacts with carbon dioxide at elevated temperatures, forming lithium carbonate, Li2CO3. Lithium forms alloys with several metals including aluminum, calcium, copper, magnesium, mercury, sodium, potassium, silver, tin and zinc. It combines with phosphorus, arsenic and antimony on heating, forming their binary salts: The metal behaves as a reducing agent at high temperatures. It reduces aluminum chloride to aluminum and boron oxide to boron: Lithium liberates hydrogen from ethanol, forming lithium ethoxide: 2Li + 2C2H5OH → 2C2H5OLi + H2 Several organolithium compounds have important applications in organic syntheses. These may be readily synthesized by reactions of lithium with organics. The metal reacts with alkyl or aryl halides or mercury alkyls or aryls to produce alkyl or aryl lithium.
Chemical Propertiessoft silver metal
Chemical PropertiesLithium is a silvery to grayish-white metal that turns yellow on exposure to air and/or moisture.
HistoryDiscovered by Arfvedson in 1817. Lithium is the lightest of all metals, with a density only about half that of water. It does not occur free in nature; combined it is found in small amounts in nearly all igneous rocks and in the waters of many mineral springs. Lepidolite, spodumene, petalite, and amblygonite are the more important minerals containing it. Lithium is presently being recovered from brines of Searles Lake, in California, and from Nevada, Chile, and Argentina. Large deposits of spodumene are found in North Carolina. The metal is produced electrolytically from the fused chloride. Lithium is silvery in appearance, much like Na and K, other members of the alkali metal series. It reacts with water, but not as vigorously as sodium. Lithium imparts a beautiful crimson color to a flame, but when the metal burns strongly the flame is a dazzling white. Since World War II, the production of lithium metal and its compounds has increased greatly. Because the metal has the highest specific heat of any solid element, it has found use in heat transfer applications; however, it is corrosive and requires special handling. The metal has been used as an alloying agent, is of interest in synthesis of organic compounds, and has nuclear applications. It ranks as a leading contender as a battery anode material because it has a high electrochemical potential. Lithium is used in special glasses and ceramics. The glass for the 200-inch telescope at Mt. Palomar contains lithium as a minor ingredient. Lithium chloride is one of the most hygroscopic materials known, and it, as well as lithium bromide, is used in air conditioning and industrial drying systems. Lithium stearate is used as an all-purpose and hightemperature lubricant. Other lithium compounds are used in dry cells and storage batteries. Seven isotopes of lithium are recognized. Natural lithium contains two isotopes. The metal is priced at about $1.50/g (99.9%).
UsesIn production of organometallic alkyl and aryl lithium compounds; in production of high-strength, low-density aluminum alloys for the aircraft industry; extremely tough, low-density alloys with aluminum and magnesium used for armour plate and aerospace components. In polymerization catalysts for the polyolefin plastics industry; manufacture of high-strength glass and glass-ceramics. As anode in electrochemical cells and batteries; as chemical intermediate in organic syntheses. Lithium stearate as thickener and gelling agent to transform oils into lubricating greases.
General DescriptionA soft silvery metal that is normally grayish white due to oxide formation. Spontaneous ignition is likely if heated to melting point.
Air & Water ReactionsHighly flammable. Is readily ignited by and reacts with most extinguishing agents such as water, carbon dioxide, and carbon tetrachloride [Mellor 2, Supp 2:71. 1961]. Reacts with water to form caustic Litium hydroxide and hydrogen gas (H2). Litium is spontaneously flammable in air if heated to 180°C if the surface of the metal is clean.
Reactivity ProfileBurns in air, oxygen, nitrogen, hydrogen, and carbon dioxide. The reactions can become extremely violent at higher temperatures. The disposition to ignite of surfaces of molten Litium exposed to any of these gases is increased by the presence of Litium oxides and nitrides. Litium reacts avidly with water to generate gaseous hydrogen and a solution of Litium hydroxide (a caustic). Contact with halogenated hydrocarbons can produce extremely violent reactions, especially on impact [Haz. Chem. Data 1966]. Boron trifluoride reacts with incandescence when heated with Litium [Merck 11th ed. 1989]. Maleic anhydride decomposes explosively in the presence of Litium [Chemical Safety Data Sheet SD-88. 1962, Chem. Haz. Info. Series C-71. 1960]. Chlorine vapors and Litium react producing a luminous flame [Mellor 2, Supp. 1:380. 1956]. The product of the reaction between Litium and carbon monoxide, Litium carbonyl, detonates violently with water, igniting the gaseous products [Mellor 2, Supp. 2:84. 1961]. The reaction of Litium and ferrous sulfide starts around 260°C with subsequent rise in temperature to 950° C [Mellor 2, Supp. 2:80. 1961]. A truck, which was carrying Litium batteries, sodium dithionite and derivatives of cyanide, caught fire; multiple explosions occurred as the cargo was exposed to the air.
Health HazardContact with eyes causes caustic irritation or burn. Incontact with skin Litium reacts with body moisture to cause chemical burns: foil, ribbon, and wire react relatively slowly.
Potential ExposureLithium is used in inorganic syntheses; the manufacture of storage batteries; heat transfer liquids; and metal alloys.
First aidIf this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. Medical observation is recommended for 24 to 48 hours after breathing overexposure, as pulmonary edema may be delayed. As first aid for pulmonary edema, a doctor or authorized paramedic may consider administering a drug or other inhalation therapy.
ShippingUN1415 Lithium, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material. UN3089 Metal powders, flammable, n.o.s., Hazard Class: 4.1; Labels: 4.1- Flammable solid
Purification MethodsAfter washing with pet ether to remove storage oil, lithium is fused at 400o and then forced through a 10-micron stainless-steel filter with argon pressure. It is again melted in a dry-box, skimmed, and poured into an iron distillation pot. After heating under a vacuum to 500o, cooling and returning it to the dry-box for a further cleaning of its surface, the lithium is distilled at 600o using an all-iron distillation apparatus [Gunn & Green J Am Chem Soc 80 4782 1958].
IncompatibilitiesViolent reaction with water, forming flammable hydrogen gas and corrosive lithium hydroxide, a strong caustic solution. Heating may cause violent combustion or explosion. Finely divided particles or powdered form may ignite spontaneously in air. Contact with air forms corrosive fumes of lithium hydroxide. Violent reaction with oxidizers, acetonitrile, nitric acid; arsenic, bromobenzene, carbon tetrachloride; hydrocarbons, halogens, halons, sulfur, and many other substances. Forms impactand friction-sensitive mixtures with bromobenzene, carbon tetrabromide, chloroform (weak explosion), iodoform, halogens, halocarbons, methyl dichloride; methyl diiodide and other substances. Attacks plastics, rubber, ceramic materials; concrete, sand, and metal alloys: cobalt, iron, manganese, nickel
Lithium Preparation Products And Raw materials
Raw materialsArgon-->Lithium chloride
Preparation ProductsDiphenylphosphine-->1,3-Bis(diphenylphosphino)propane-->Diphenyl-2-pyridylphosphine-->Gemfibrozil-->Leaf alcohol-->Chlorodimethylphenylsilane-->(S)-(-)-2,2'-Bis(diphenylphosphino)-1,1'-binaphthyl-->(1R,2R)-(+)-1,2-Diphenylethylenediamine-->[1,3-Bis(diphenylphosphino)propane]nickel(II) chloride-->Cinmethylin-->4,6-DIMETHYL-PYRIDINE-2-CARBOXYLIC ACID-->(-)-DIOP-->1,2-Bis(diphenylphosphino)ethane nickel(II) chloride-->(3S,4S)-(-)-1-BENZYL-3,4-BIS(DIPHENYLPHOSPHINO)PYRROLIDINE-->(+)-(3R,4R)-BIS(DIPHENYLPHOSPHINO)-1-BENZYLPYRROLIDINE-->Diphenylphosphine oxide-->(+)-DIOP-->Estradiol-->Bis(diphenylphosphino)methane-->(1S,2S)-(-)-1,2-Diphenyl-1,2-ethanediamine-->(2S,4S)-(-)-N-BOC-4-Diphenylphosphino-2-diphenylphosphinomethyl-pyrrolidine-->2-(DIPHENYLPHOSPHINO)ETHYLTRIETHOXYSILANE-->2-(HYDROXYETHYL)-6-METHYLPYRIDINE-->11b,21-Dihydroxy-2'-methyl-5'bH-pregna-1,4-dieno[17,16-d]oxazole-3,20-dione 21-acetate-->2-[2-(DIPHENYLPHOSPHINO)ETHYL]PYRIDINE-->2-(DIPHENYLPHOSPHINO)ETHYLAMINE-->(XYL)2P(O)H-->Cyclopentanol-->BIS(P-TOLYL)PHOSPHINE OXIDE-->TRIS(TRIMETHYLSILYL)SILANE-->Tris(triphenylphosphine)ruthenium(II) chloride-->2-DIPHENYLPHOSPHINO-6-METHYLPYRIDINE-->Empenthrin-->[1,2-Bis(diphenylphosphino)ethane]dichloropalladium(II)-->2-(4-Methylphenyl)pyridine-->Methoxydienone-->1,3-DIMETHYL-4-PHENYL-4-PIPERIDINOL-->Lithium peroxide-->13-ethyl-3-methoxygona-2,5(10)-dien-17beta-ol-->2,6-DICHLORO-5-FLUORONICOTINOYL CHLORIDE
Tag:Lithium(7439-93-2) Related Product Information
ADENOSINE-5'-O-(3-THIOTRIPHOSPHORIC ACID), LITHIUM Lithium hydroxide ADENOSINE-5'-O-(1-THIOTRIPHOSPHATE) LITHIUM SALT ADENOSINE 3'-PHOSPHATE 5'-PHOSPHOSULFATE LITHIUM SALT,APPS LITHIUM SALT 7-DEAZAGUANOSINE-5'-TRIPHOSPHATE LITHIUM SALT A[5']P5[5']A LITHIUM SALT (ALPHA-GLYCEROPHOSPHORYL)-D-MYO-1-INOSITOL, LITHIUM SALT 8-AZIDOADENOSINE-5'-TRIPHOSPHATE LITHIUM SALT ALPHA-D-GALACTURONIC ACID 1-PHOSPHATE LITHIUM SALT ACETYL PHOSPHATE LITHIUM SALT,ACETYL PHOSPHATE, LITHIUM ARACHIDONOYL COENZYME A LITHIUM SALT Lithium bromide n-Butyllithium ACETYLPHOSPHATE, POTASSIUM-LITHIUM SALT,ACETYL PHOSPHATE LITHIUM POTASSIUM SALT LUCIFER YELLOW VS DILITHIUM SALT Lithium ALUMINIUM LITHIUM TETRAHYDRIDE,ALUMINIUM LITHIUM HYDRIDE Lithium chloride