ChemicalBook--->CAS DataBase List--->7440-37-1

7440-37-1

7440-37-1 Structure

7440-37-1 Structure
IdentificationMore
[Name]

Argon
[CAS]

7440-37-1
[Synonyms]

18Ar
Argon
argongas
argon(0)
argon atom
argonliquid
Chebi:49475
liquidargon
argonliquide
Argon gas-36Ar
Argon gas-38Ar
ARGON, 99.998+%
ARGON ULTRAPLUS
ARGON SPUTTERING
argon,compressed
argon,highpurity
High purity argon
ARGON GIGAPLUS(TM)
ARGON UHP ELECTRONIC
Air separation plants
argon,refrigeratedliquid
Argon ISO 9001:2015 REACH
ARGON, PRESSURE TIN WITH 1 L
Argon for electric light bulbs
Argon 99.999%, Messer(R) CANGas
ARGON (PURE GAS) 1X14L SCOTTY 14 99.995%
argon,refrigeratedliquid(cryogenicliquid)
[EINECS(EC#)]

231-147-0
[Molecular Formula]

Ar
[MDL Number]

MFCD00003431
[Molecular Weight]

39.95
[MOL File]

7440-37-1.mol
Chemical PropertiesBack Directory
[Definition]

A nonmetallic element of atomic number 18, in the noble gas group of the Periodic System. Aw 39.948. Present in atmosphere to 0.94% by volume.
[Appearance]

With the symbol A, argon is a nonflammable gas; one of the elements in the inert gas category. It is colorless.
[Melting point ]

-189.2 °C(lit.)
[Boiling point ]

-185.7 °C(lit.)
[density ]

1.784(0℃)
[vapor density ]

1.38 (21 °C, vs air)
[solubility ]

slightly soluble in H2O
[form ]

colorless gas
[color ]

colorless
[Stability:]

Stable. Inert.
[Water Solubility ]

33.6mL/1000g H2O (20°C) [KIR78]; Henry’s law constants, k×10?4: 3.974 (25.0°C), 5.359 (65.1°C), 5.342 (91.1°C), 3.812 (222.7°C), 2.541 (267.3°C), 1.870 (287.9°C) [POT78]
[Merck ]

13,788
[Dielectric constant]

1.5(-191℃)
[History]

The presence of Argon in air was suspected by Cavendish in 1785, discovered by Lord Rayleigh and Sir William Ramsay in 1894. The gas is prepared by fractionation of liquid air, the atmosphere containing 0.94% argon. The atmosphere of Mars contains 1.6% of 40Ar and 5 p.p.m. of 36Ar. Argon is two and one half times as soluble in water as nitrogen, having about the same solubility as oxygen. It is recognized by the characteristic lines in the red end of the spectrum. It is used in electric light bulbs and in fluorescent tubes at a pressure of about 400 Pa, and in filling photo tubes, glow tubes, etc. Argon is also used as an inert gas shield for arc welding and cutting, as a blanket for the production of titanium and other reactive elements, and as a protective atmosphere for growing silicon and germanium crystals. Argon is colorless and odorless, both as a gas and liquid. It is available in high-purity form. Commercial argon is available at a cost of about 3¢ per cubic foot. Argon is considered to be a very inert gas and is not known to form true chemical compounds, as do krypton, xenon, and radon. However, it does form a hydrate having a dissociation pressure of 105 atm at 0°C. Ion molecules such as (ArKr)+, (ArXe)+, (NeAr)+ have been observed spectroscopically. Argon also forms a clathrate with β-hydroquinone. This clathrate is stable and can be stored for a considerable time, but a true chemical bond does not exist. Van der Waals’ forces act to hold the argon. In August 2000, researchers at the University of Helsinki, Finland reported they made a new argon compound HArF 4-4 The Elements by shining UV light on frozen argon that contained a small amount of HF. Naturally occurring argon is a mixture of three isotopes. Seventeen other radioactive isotopes are now known to exist. Commercial argon is priced at about $70/300 cu. ft. or 8.5 cu. meters.
[LogP]

0.740 (est)
[CAS DataBase Reference]

7440-37-1(CAS DataBase Reference)
[NIST Chemistry Reference]

Argon(7440-37-1)
[EPA Substance Registry System]

7440-37-1(EPA Substance)
Hazard InformationBack Directory
[Chemical Properties]

colourless odourless gas
[Chemical Properties]

With the symbol A, argon is a nonflammable gas; one of the elements in the inert gas category. It is colorless.
[Uses]

Gas as shield in gas metal-arc welding, in metal processing; carrier in gas-liquid and gas-solid chromatography; gas filler for incandescent light bulbs. Gas in fluorescent tubes analogous to neon lights, but produces a blue-purplish light; in rectifier tubes; in thermometers above mercury; in lasers; wherever an inert atmosphere is desired and the much cheaper nitrogen cannot be used; in ionization chambers and particle counters; in mixtures with He and Ne in Geiger counters; in argon-oxygen-decarburizing process for stainless steel; in manufacture of semiconducting devices; in gas mixtures as the working fluid in plasma arc devices. Liquid as cryogen to produce low temperetures. The isotope 40Ar is always found in minerals contg potassium, since it is a product of 40K decay; measuring the amount of 40Ar and 40K can be used for determining the geologic age of minerals and meteors.
[General Description]

A colorless odorless noncombustible gas. Heavier than air and can asphyxiate by displacement of air. Exposure of the container to prolonged heat or fire can cause ARGON(7440-37-1) to rupture violently and rocket . If liquefied, contact of the very cold liquid with water may cause violent boiling. If the water is hot, there is the possibility that a liquid "superheat" explosion may occur. Contacts with water in a closed container may cause dangerous pressure to build.
[Reactivity Profile]

These substances undergo no chemical reactions under any known circumstances. They are nonflammable, noncombustible and nontoxic. They can asphyxiate.
[Health Hazard]

Vapors may cause dizziness or asphyxiation without warning. Vapors from liquefied gas are initially heavier than air and spread along ground.
[Potential Exposure]

Argon is used in metal fabrication and steel making; as an inert gas shield in arc welding; as an inert atmosphere in electric lamps; as a blanketing agent in metals refining (especially titanium and zirconium).
[Fire Hazard]

Non-flammable gases. Containers may explode when heated. Ruptured cylinders may rocket.
[First aid]

If contact with liquid argon occurs, seek medical attention immediately; do NOT rub the affected areas or flush them with water. In order to prevent further tissue damage, do NOT attempt to remove frozen clothing from frostbitten areas. If frostbite has NOT occurred, immediately and thoroughly wash contaminated skin with warm water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility.
[Shipping]

UN1006 Argon, compressed, Hazard Class: 2.2; Labels: 2.2-Nonflammable compressed gas. Cylinders must be transported in a secure upright position, in a wellventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.
[Description]

Argon belongs to the family of inert, rare gases of the atmosphere. It is plentiful compared to the other rare atmospheric gases; I million ft3 (28 300 m3) of dry air contains 9340 ft3 (264 m3 ) of argon. Argon is colorless, odorless, tasteless, and nontoxic. It is extremely inert and forms no known chemical compounds. It is slightly soluble in water.
[Waste Disposal]

Vent to atmosphere. Return refillable compressed gas cylinders to supplier.
[Physical properties]

Argon is a colorless, odorless, tasteless, chemically inert noble gas that makes up about0.93% of the Earth’s atmosphere. It is the third most abundant gas in the atmosphere, meaningit is more common than carbon dioxide, helium, methane, and hydrogen.
Its melting point is –189.35°C, its boiling point is –185.85°C, and its density is0.0017837g/cm3.
[Isotopes]

There are a total of 24 isotopes of argon, three of which are stable. They areAr-36, which constitutes just 0.3365% of the natural amount of argon; Ar-38, which contributesjust 0.0632% to the amount of argon on Earth; and Ar-40, which, by far, constitutesthe most argon on Earth, 99.6003% of its natural abundance.
[Origin of Name]

The name “argon” is derived from the Greek word argos, meaning “inactive.”
[Occurrence]

Argon is the 56th most abundant element on Earth. It is the most abundant of all the noblegases found in the atmosphere. In fact, the only source of argon is the atmosphere, where it isfound at just under 1% of air by volume.
There are several methods of producing argon. The most common is by fractional distillationof liquid air. Argon is collected as a by-product of this large-scale commercial process.During fractional distillation, argon boils off at its own unique temperature. It is then collectedand purified by passing it through charcoal to filter out helium and other gases, producingsignificant amounts of argon.
[Characteristics]

Although argon is considered chemically inert, at low temperatures it is possible to combineargon with other atoms to form very fragile compounds, which exist only at those verylow temperatures. For instance, it can combine with fluorine and hydrogen to form argonfluorohydride (HArF). It is only slightly soluble in water.
[Purification Methods]

Argon is rendered oxygen-free by passage over reduced copper at 450o, or by bubbling through alkaline pyrogallol and H2SO4, then dried with CaSO4, Mg(ClO4)2, or Linde 5A molecular sieves. Other purification steps include passage through Ascarite (CARE: asbestos impregnated with sodium hydroxide), through finely divided uranium at about 800o and through a -78o cold trap. Alternatively the gas is passed over CuO pellets at 300o to remove hydrogen and hydrocarbons, over Ca chips at 600o to remove oxygen and, finally, over titanium chips at 700o to remove nitrogen. It has also been purified by freeze-pump-thaw cycles and by passage over sputtered sodium [Arnold & Smith J Chem Soc, Faraday Trans 2 77 861 1981]. Arsenic acid (arsenic pentoxide hydrate, arsenic V oxide hydrate, orthoarsenic acid) [12044-50-7] M 229.8 + xH2O, pK 1 2.26, pK 2 6.76, pK 3 11.29 (H3AsO4). The acid crystallises from concentrated solutions of boiling conc HNO3 as rhombic crystals. Dry it in a vacuum to give the hemihydrate (hygroscopic). Heating above 300o yields As2O5. [Thaler Z Anorg Allgem Chem 246 19 1941, Schenk in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 601 1963.]
[Hazard]

Argon is nontoxic, but as an asphyxiant gas, it can smother by replacing oxygen in thelungs.
[Industrial uses]

A chemical element (symbol Ar), argon is thethird member of the gaseous elements calledthe noble, inert, or rare gases, although argonis not actually rare. The earth’s atmosphere isthe only commercial argon source; however,traces of the gas are found in minerals andmeteorites.Argon is colorless, odorless, and tasteless.The element is a gas under ordinary conditions,but it can be liquefied, solidified readily, and isa major industrial gas.Argon does not form any chemical compoundsin the ordinary sense of the word,although it does form some weakly bondedclathrate compounds with water, hydroquinone,and phenol. There is one atom in each moleculeof gaseous argon.
The oldest large-scale use for argon is infilling electric lightbulbs. Welding and cuttingmetal consumes the largest amount of argon.Metallurgical processing constitutes an importantapplication.Argon and Ar–Kr mixtures are used, alongwith a little mercury vapor, to fill fluorescentlamps. The inert gases make the lamps easierto start, help to regulate the voltage, and supplementthe radiation produced by the excitedmercury vapor.Argon mixed with a little neon is used tofill luminous electric-discharge tubes employedin advertising signs (similar to neon signs)when a blue or green color is desired instead ofthe red color of neon.Argon is used to fill the space between thepanes of higher-quality double-pane windows,reducing heat transfer by gaseous conductionby about 30% compared to air filling.Argon is also used in gas-filled thyratrons.Geiger–Müller radiation counters, ionizationchambers that measure cosmic radiation, andelectron tubes of various kinds. Argon atmospheresare used in dry boxes during manipulationof very reactive chemicals in the laboratoryand in sealed-package shipments of suchmaterials. In high-energy physics research, atank of liquid argon can form a calorimeter todetect certain subatomic particles.
[Materials Uses]

Gaseous argon is noncorrosive and inert, and consequently may be contained in systems constructed of any common metals and designed to safely withstand the pressures involved. At the temperature of liquid argon, ordinary carbon steels and most alloy steels lose their ductility and are considered unsafe for liquid argon service. Satisfactory materials for use with liquid argon include austenitic stainless steel (for example, types 304 and 316), copper, Monel, brass, aluminum, and other nickel-chromium alloys.
[Physiological effects]

Argon is nontoxic and largely inert. It can act as a simple asphyxiant by diluting the concentration of oxygen in air below levels necessary to support life. Inhalation of it in excessive concentrations can result in dizziness, nausea, vomiting, loss of consciousness, and death. Death may result from errors in judgment, confusion, or loss of consciousness, which prevents self-rescue. At low-oxygen concentrations, unconsciousness and death may occur in seconds without warning.
Gaseous argon must be handled with all the precautions necessary for safety as with any nonflammable, nontoxic compressed gas. All precautions necessary for the safe handling of any gas liquefied at very low temperatures must be observed with liquid argon. Extensive tissue damage or burns can result from exposure to liquid argon or cold argon vapors.
[storage]

Gaseous argon is commonly stored in high pressure cylinders, tubes, or tube trailers. Liquid argon is commonly stored at the consumer site in cryogenic liquid containers and specially designed vacuum-insulated cryogenic storage tanks.
All of the precautions necessary for the handling of any nonflammable gas or cryogenic liquid must be taken.
Liquid and gaseous systems should be designed and installed only under the direction of personnel thoroughly familiar with liquid and gaseous argon equipment and in compliance with state, provincial, and local requirements.
Safety DataBack Directory
[Safety Statements ]

S38:In case of insufficient ventilation, wear suitable respiratory equipment .
[RIDADR ]

UN 1006 2.2
[WGK Germany ]

-
[RTECS ]

CF2300000
[F ]

4.5-31
[DOT Classification]

2.2 (Nonflammable gas)
[HazardClass ]

2.2
[Safety Profile]

A simple asphyxlant gas. As an inert gas, it has no specific inherent dangerous properties. Gases of this type have no specific toxicity effect, but they act by excluding O2 from the lungs. The effect of simple asphyxiant gases is proportional to the extent to whch they dirmnish the amount (partial pressure) of O2 in the air that is breathed. The oxygen may be diminished to 75% of its normal percentage in air before appreciable symptoms develop, and t h s in turn requires the presence of a simple asphyxiant in a concentration of 33% in the mixture of air and gas. When the simple asphyxiant reaches a concentration of 50%, marked symptoms can be produced. A concentration of 75% is fatal in a matter of minutes. The first symptoms produced by simple asphyxiant gases such as argon are rapid respirations and air hunger. Mental alertness is diminished and muscular coordination is impaired. Later, judgment becomes faulty and all sensations are depressed. Emotional instability often results and fatigue occurs rapidly. As the asphyxia progresses, there may be nausea and vomiting, prostration, and loss of consciousness, and finally, convulsions, deep coma, and death.
[Hazardous Substances Data]

7440-37-1(Hazardous Substances Data)
Raw materials And Preparation ProductsBack Directory
[Raw materials]

Ammonia-->Nitrogen-->Hydrogen
[Preparation Products]

Lithium-->(1R,2R)-N-BOC-1-AMINO-2-PHENYLCYCLOPROPANECARBOXYLIC ACID-->4H-AMINO-6-BROMO-2,3-DIHYDROTHIOCHROMEN-1,1-DIOXIDE-->Silicon-->4-Hydroxy-6-bromo-2,3-dihydrothiochromen-1,1-dioxide-->Silicon carbide-->5-amino-1H-Indole-2-carboxylic acid ethyl ester-->3-ACETYLBENZONITRILE-->2-AMINOCYCLOHEXANECARBONITRILE-->3-(2-Bromoacetyl)benzonitrile-->acrylate ternary copolymer bound disulfide platinum complex catalyst-->ETHYL 5-AMINO-1H-INDOLE-2-CARBOXYLATE-->4-PYRIDIN-2-YLISOXAZOL-5-AMINE-->2-(5-METHYL-2-PHENYL-1,3-OXAZOL-4-YL)ACETIC ACID-->polypyrrole-polyvinyl chloride composite film-->Gestodene-->Docetaxel-->KRYPTON-->Beraprost-->Tacalcitol-->Idarubicin-->Germanium-->METHYL 4-BROMO-3-OXOPENTANOATE-->Silicon monoxide-->CALCIUM PHOSPHIDE-->GALLIUM PHOSPHIDE-->XENON-->ALUMINUM ZIRCONATE-->Cesium-->argon-neon mixture
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

Argon(7440-37-1).msds
Well-known Reagent Company Product InformationBack Directory
[Sigma Aldrich]

7440-37-1(sigmaaldrich)
7440-37-1 suppliers list
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: +86-0371-55170693 +86-19937530512 , +86-19937530512
Website: https://www.tianfuchem.com/
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 18871490254
Website: www.hubeijusheng.com
Company Name: Hubei xin bonus chemical co. LTD
Tel: 86-13657291602
Website: www.chemicalbook.com/ShowSupplierProductsList1549548/0.htm
Company Name: Shaanxi Dideu Medichem Co. Ltd
Tel: +86-029-89586680 +86-18192503167 , +86-18192503167
Website: www.dideu.com
Company Name: Hebei Duling International Trade Co. LTD
Tel: +8618032673083 , +8618032673083
Website: www.chemicalbook.com/showsupplierproductslist1283525/0.htm
Company Name: Bhuruka Gases Ltd  
Tel: +91-7760976502 +91-8041818200
Website: www.bhurukagases.com
Company Name: Gujarat State Fertilizers And Chemicals Ltd  
Tel: +91-2652242451 +91-9879275045
Website: www.gsfclimited.com
Company Name: INOX Air Products Pvt Ltd  
Tel: +91-8097310308 +91-9323937333
Website: www.inoxairproducts.com
Company Name: Rashtriya Chemicals and Fertilizers Limited  
Tel: +91-9969062114 +91-9139357099
Website: www.rcfltd.com
Company Name: Vadilal Chemicals Limited   
Tel: +91-7948936937 +91-7203030735
Website: www.vadilalchemicals.in
Company Name: United Industrial Gas Company  
Tel: +91-2512621110 +91-9820285382
Website: www.www.NOWEBSITE
Company Name: Guljag Industries Limited  
Tel: +91-9772500432 +91-9649049000
Website: www.guljag.com
Company Name: Maharashtra Gas Co  
Tel: +91-8097713800 +91-9833780675
Website: www.maharashtragas.com
Company Name: Goyal MG Gases Private Limited  
Tel: +91-1141628143 +91-1141628143
Website: www.goyalgroup.com
Company Name: SSD Gases Pvt Ltd.  
Tel: +91-9167728589 +91-8879200107
Website: www.www.NOWEBSITE
Company Name: Mainchem Co., Ltd.  
Tel: +86-0592-6210733
Website: https://www.mainchem.com
Company Name: Chemwill Asia Co.,Ltd.  
Tel: 86-21-51086038
Website: www.chemwill.com
Company Name: PERIC Special Gases Co., Ltd.  Gold
Tel: 0310-7182720-613 15620672519
Website: www.pericsg.com/
Tags:7440-37-1 Related Product Information
7727-37-9 7440-37-1 75-05-8 111-69-3 2269-22-9 109-63-7 67-63-0 75-09-2 71-43-2 64-17-5 14044-65-6 67-68-5