ChemicalBook--->CAS DataBase List--->7481-89-2

7481-89-2

7481-89-2 Structure

7481-89-2 Structure
IdentificationMore
[Name]

Zalcitabine
[CAS]

7481-89-2
[Synonyms]

DC
D 2C
Hivid
ddCyd
I-livid
2',3'-ddC
NSC 606170
ZALCITABINE
Ro 24-2027/000
dideoxycytidine
3'-Dideoxycytidine
Zalcitabine (200 mg)
2',3'-dideoxy cytidi
2',3'-DIDEOXYCYTIDINE
2’,3’-dideoxy-cytidin
2',3'-Dideoxy-D-cytidine
2',3'-Dideoxycytidine, 98+%
BETA-D-2',3'-DIDEOXYCYTIDINE
2',3'-DIDEOXYCYTIDINE extapure
Cytidine, 2',3'-dideoxy-(8CI, 9CI)
2'',3''-DIDEOXYCYTIDINE(ZALCITABINE)
ZALCITABINE [2'',3''-DIDEOXYCYTIDINE]
Zalcitabine(2'-3'-dideoxycytidine, ddC)
2'', 3''-DIDEOXYCYTIDINE (ZALCITABINE: DDC)
1-(2',3'-DIDEOXY-BETA-RIBOFURANOSYL)CYTOSINE
1-(2,3-Dideoxy-beta-D-ribofuranosyl)cytosine
23Dideoxycytidine, Dideoxycytidine, ddCyd, Hivid
ddC 1-(2,3-Dideoxy-beta-D-ribofuranosyl)cytosine Zalcitabine
4-Amino-1-(2,3-dideoxy-β-D-ribofuranosyl)pyrimidine-2(1H)-one
4-AMINO-1-[(2R,5S)-5-(HYDROXYMETHYL)OXOLAN-2-YL]PYRIMIDIN-2-ONE
4-AMino-1-((2R,5S)-5-(hydroxyMethyl)tetrahydrofuran-2-yl)pyriMidin-2(1H)-one
[EINECS(EC#)]

620-762-3
[Molecular Formula]

C9H13N3O3
[MDL Number]

MFCD00012188
[Molecular Weight]

211.22
[MOL File]

7481-89-2.mol
Chemical PropertiesBack Directory
[Appearance]

White to Off-White Cyrstalline Powder
[Melting point ]

217-218 °C(lit.)
[alpha ]

D25 +81° (c = 0.635 in water)
[Boiling point ]

350.9°C (rough estimate)
[density ]

1.2605 (rough estimate)
[refractive index ]

78 ° (C=0.5, H2O)
[storage temp. ]

2-8°C
[solubility ]

DMSO (Slightly, Heated), Methanol (Slightly), Water (Slightly, Sonicated)
[form ]

powder
[pka]

14.44±0.10(Predicted)
[color ]

colorless
[Stability:]

Stable. Combustible. Incompatible with strong oxidizing agents.
[Water Solubility ]

5-10 g/100 mL at 19 ºC
[Usage]

A pyrimidine nucleoside analogue with antiviral activity
[Merck ]

14,10109
[BRN ]

654956
[InChIKey]

WREGKURFCTUGRC-POYBYMJQSA-N
[CAS DataBase Reference]

7481-89-2(CAS DataBase Reference)
[IARC]

2B (Vol. 76) 2000
[EPA Substance Registry System]

7481-89-2(EPA Substance)
Safety DataBack Directory
[Hazard Codes ]

Xn,C
[Risk Statements ]

R40:Limited evidence of a carcinogenic effect.
R36/37:Irritating to eyes and respiratory system .
R34:Causes burns.
[Safety Statements ]

S22:Do not breathe dust .
S36:Wear suitable protective clothing .
S45:In case of accident or if you feel unwell, seek medical advice immediately (show label where possible) .
S36/37/39:Wear suitable protective clothing, gloves and eye/face protection .
S27:Take off immediately all contaminated clothing .
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
[WGK Germany ]

3
[RTECS ]

HA3870000
[F ]

10-23
[HS Code ]

2934990002
[Hazardous Substances Data]

7481-89-2(Hazardous Substances Data)
Raw materials And Preparation ProductsBack Directory
[Raw materials]

Ammonia-->Palladium-->Hydrogen-->Acetyl bromide-->Cytidine-->Ethylenediaminetetraacetic acid-->2-Acetoxy-2-methylpropionyl bromide-->Benzyltrimethylammonium hydroxide-->Palladium hydroxide-->Acetic anhydride-->N4-Acetylcytidine-->ZINC-->POLY(4-VINYLPYRIDINE)-->ZALCITABINE RELATED COMPOUND A (50 MG) (2',3'-DIDEHYDRO-2',3'-DIDEOXYCYTIDINE)-->(S)-5-Hydroxymethyldihydrofuran-2-one-->Ammonium hydroxide
Hazard InformationBack Directory
[General Description]

White crystalline powder. Odorless.
[Reactivity Profile]

2',3'-DIDEOXYCYTIDINE(7481-89-2) may be sensitive to prolonged exposure to light.
[Air & Water Reactions]

Water soluble.
[Fire Hazard]

Flash point data for this chemical are not available; however, 2',3'-DIDEOXYCYTIDINE is probably combustible.
[Description]

Zalcitabine is an analog of pyrimidine derived from deoxycytidine with the replacement of the hydroxyl group in position 3’ with a hydrogen. In cells, it is phosphorylated to the active triphosphate form, ddCTP, which acts as a substrate for HIV reverse transcriptase (Ki = 51 nM). It incorporates into viral DNA where it terminates chain elongation when the missing hydroxyl group is encountered. Zalcitabine was the third antiretroviral approved by the FDA for treatment of HIV infection and AIDS.
[Description]

Zalcitabine is an orally active dideoxynucleoside andog for combination use with zidovudine in advanced HIV infection and also as monotherapy for AIDS patients who cannot tolerate or have not responded to zidovudine. It has a similar mechanism of action (inhibition of reverse transcriptase) to didanosine. Like didanosine, its side effect profile includes peripheral neuropathy. Unlike zidovudine, zalcitabine does not cause bone marrow suppression.
[Chemical Properties]

White to Off-White Cyrstalline Powder
[Originator]

National Cancer Institute (NIH) (U.S.A.)
[Uses]

A pyrimidine nucleoside analogue with antiviral activity
[Uses]

A pyrimidine nucleoside analogue with antiviral activity.
[Uses]

ammonia detoxicant, diagnostic aid
[Definition]

ChEBI: A pyrimidine 2',3'-dideoxyribonucleoside compound having cytosine as the nucleobase.
[Indications]

Zalcitabine (ddC, Hivid) is a cytidine analogue active against HIV-1, HIV-2, and hepatitis B virus. It is used for the treatment of HIV infection in adults and asymptomatic children as part of a multidrug regimen. It may be less effective than the other nucleoside inhibitors and is used less frequently.
[Manufacturing Process]

Bromoacetylation of N-acetylcytidine with 2-acetoxy-2-methylpropanoyl bromide
A 5 L three-nicked, round-bottomed flask equipped with a mechanical stirrer, thermometer, nitrogen inlet tube, and additional funnel was charge with 142.6 g (0.5 mole) of N-acetylcytidine, and 1.25 L of acetonitrile. The suspension was stirred under nitrogen, cooled to 5°C (ice-bath), and treated dropwise (during 20 min) with 225 ml of 2-acetoxy-2-methylpropanoyl bromide (AIBB) during 30 minutes. At the completion of the addition, a homogeneous solution resulted. It was stirred at room temperature overnight (the reaction was complete within 3 hr), cooled to 5°C, and diluted with 1.25 L of ethyl acetate. After recooling to 5°C, 2.0 L of saturated sodium bicarbonate was added. The mixture was stirred for 5 minutes, the organic phase was separated, and the aqueous phase was back-extracted with 500 ml of ethyl acetate. The combined organic extracts were washed with 1 L of saturated brine, dried (MgSO 4 ), and evaporated to give a gum. Final drying at 40°C (1 mm) for 1 hrgave 264.7 g (102%) of a white solid. High pressure liquid chromatographic analysis gave the following results (major peaks only): 40% of [2R- [2α,3β,4α,5α(S*)]]-N-[1-[3-(acetyloxy)-5-[(2-(acetyloxy)-1-oxopropoxy] methyl]-4-bromotetrahydro-2-furanyl]-1,2-dihydro-2-oxo-4-pyrimidinyl] acetamide (a) and 24% of its regioisomer (b).
Preparation of [2R-[2α,3β,4α,5α(S*)]]-N-[1-[3-(acetyloxy)-5-[(2-(acetyloxy)- 1-oxopropoxy]methyl]-4-bromotetrahydro-2-furanyl]-1,2-dihydro-2-oxo-4- pyrimidinyl]acetamide (a) and its regioisomer (b).
A 1-L, three-necked, round-bottomed flask equipped with a mechanical stirrer and argon inlet was charged with 28.52 g of N-acetylcytidine in 250 ml of acetonitrile. The mixture was cooled to 10°C and treated with 48.75 g of (S)- (-)-2-acetoxypropionyl bromide during 15 minutes. It was stirred at room temperature overnight, cooled to 10°C, treated with 400 ml of cold (0°C) saturated sodium bicarbonate, and extracted with 250 ml of ethyl acetate. The extract was washed with 200 ml of saturated brine, dried (MgSO 4 ) and evaporated to give 45.45 g of a white foam. Reversed phase chromatography (C 18 column) with 40% methanol in water gave a pure sample of (a).
Zinc-copper couple was prepared by the next way:
A 12 L three-necked, round-bottomed flask equipped with a mechanical stirrer was charged with 4.50 kg of zinc dust. The zinc dust was washed with 3.75 L of 3% aqueous hydrochloric acid by stirring for 3 to 5 minutes. The hydrochloric acid was decanted from the solid. This cycle was repeated with 3x3.75 L of 3% hydrochloric acid. The reaction was slightly exothermic and the volume of the zinc dust increased to double its original volume. The zinc dust was then washed with 4x3.0 L of deionized water to remove any residual hydrochloric acid. After all the water was decanted, the spongy zinc layer was treated with a solution made by dissolving 240.0 g of cupric sulfate dihydrate in 7.5 L of deionized water. The suspension was stirred rapidly as the solution was added. The aquamarine color of the cupric sulfate solution was removed almost immediately and the zinc suspension changed in color from gray to black. The near colorless aqueous layer was decanted and the solid was washed with 4x3.0 L of deionized water. The suspension of zinc-copper couple was filtered through a piece of Whatman No. 1 filter paper, then washed with 4x30 L ethanol and 3x3.0 L of ether. The solid was carefully dried at 25°C and 140 mm overnight to remove ether, then for 3 hr at 130°-140°C (0.5 mm). The solid was cooled to room temperature under vacuum and was stored under argon in amber bottles. The procedure yielded 3.84 kg of zinc-copper couple.
Preparation of [2R-[2α,5α(S*)]]-N-[1-[5-[[2-(acetyloxy)-1-oxopropoxy] methyl]-2-5-dihydro-2-furanyl]-1,2-dihydro-2-oxo-4-pyrimidinyl]acetamide.
A total of 1.47 g of a mixture of bromoacetates in acetonitril was reduced with 800 mg of zinc-copper couple. The mixture was stirred under argon at room temperature overnight. The mixture was deoxygenated by evacuation followed by filling the reaction vessel with argon (oxygen-free nitrogen may be used); this procedure was repeated three times. It was filtered over Celite, the flask was rinsed out with of acetonitrile, and the rinse was used to wash the Celite. The combined filtrate and washing were evaporated (40°C), and the residue was dissolved in of methylene chloride. This was added to a previously prepared solution of ethylenediaminetetraacetic acid disodium salt dihydrate (Fluka) in deionized water containing of sodium bicarbonate. The mixture was stirred vigorously for 1.5 hr, and filtered over Celite, which was washed with methylene chloride. The organic phase was separated and the aqueous phase was re-extracted with of methylene chloride. The combined organic was washed with of saturated sodium bicarbonate, which was back-extracted with of methylene chloride. The combined organic was dried (MgSO 4 ), filtered, and concentrated. To this was added of acetic anhydride followed by 40 g of poly- 4-vinylpyridine, and the mixture was stirred under nitrogen for 3 hr. It was filtered over Celite, which was washed with methylene chloride. The combined filtrate and washing were evaporated, toluene was added, and the mixture was evaporated again, ether was added with vigorous stirring for 15 minutes. The mixture was filtered (some scraping of the flask was necessary) and washed with ether to give 570 mg of after crystallization from hot tetrahydrofuran, melting point 125°C; [α] D 25 +119.04°(c=0.25, CHCl 3 ).
Preparation of [2R-[2α,5α(S*)]]-N-[1-[5-[[2-(acetyloxy)-1-oxopropoxy] methyl]tetrahydro-2-furanyl]-1,2-dihydro-2-oxo-4-pyrimidinyl]acetamide.
A solution of 720 mg of 2R-[2α,5α(S*)]]-N-[1-[5-[[2-(acetyloxy)-1- oxopropoxy]methyl]-2-5-dihydro-2-furanyl]-1,2-dihydro-2-oxo-4- pyrimidinyl]acetamide set forth in 10 ml L of methanol and 10 ml of tetrahydrofuran was hydrogenated over 200 mg of 10% palladium on charcoal at room temperature and atmospheric pressure until hydrogen uptake ceased (10 ml). The mixture was filtered over Celite and the filtrate was evaporated to give a gum. Chromatography on 10 g of silica (70-230 mesh) with 10% methanol in methylene chloride, gave 290 mg of the product as a foam, [α] D 25 +88.43° (C=0.99, CHCl 3 ).
Preparation of 2',3'-dideoxycytidine.
A solution of 20.7 g of [2R-[2α,5α(S*)]]-N-[1-[5-[[2-(acetyloxy)-1- oxopropoxy]methyl]tetrahydro-2-furanyl]-1,2-dihydro-2-oxo-4-pyrimidinyl] acetamide in 100 ml of ethanol was treated with 10.0 ml of Triton B (N- benzyltrimethyl-ammonium hydroxide), and the mixture was stirred at room temperature overnight. The mixture was concentrated to 20 ml, cooled to 0°C, and the product was collected by filtration. It was washed with 10 ml of cold ethanol to give 4.48 g of 2',3'-dideoxycytidine, melting point 215°-218°C, as an white solid.
[Brand name]

Hivid (Roche).
[Therapeutic Function]

Antiviral, Immunosuppressive
[Pharmacokinetics]

Zalcitabine (ddC) is a useful alternate drug to ZDV and is given in combination with ZDV when CD4 cell counts fall to less than 300 cells/mm3 . Monotherapy with ddC is more active than ZDV. Its oral bioavailability is 87%, and its plasma half-life is approximately 1 hour. In low doses (0.005 mg/kg every 4 hours), ddC produces sustained decrease in p24 antigen level and increase in CD4 cell counts. The CSF fluid/plasma ratio of ddC is 0.2. Following oral administration, bioavailability of ddC is less than 80%, which is further reduced when taken with food. The mean maximum plasma concentration of the drug also is reduced from 25.2 to 15.5 ng/mL when the drug was taken with food.
[Pharmacology]

Peripheral neuropathy occurs in up to 50% of patients taking zalcitabine. Stomatitis, esophageal ulceration, hepatotoxicity, rash, and pancreatitis may occur. Zalcitabine should be used with caution in individuals with a history of pancreatitis, liver disease, or alcohol abuse. Dosage adjustment is necessary for individuals with renal impairment. Zalcitabine should not be used in combination with didanosine, lamivudine, or stavudine.
[Side effects]

It has side effects, such as stomatitis, rash, fever, malaise, arthritis, and arthralgia.
[Metabolism]

Dideoxyuridine is the major metabolite in urine and feces. The drug penetrates the blood-brain barrier. The major toxicity of ddC is peripheral neuropathy, in which case it should be discontinued. In some cases, pancreatitis occurs when given alone or in combination with ZDV."
[storage]

Store at -20°C
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

DDC(7481-89-2).msds
Spectrum DetailBack Directory
[Spectrum Detail]

Zalcitabine(7481-89-2)MS
Zalcitabine(7481-89-2)1HNMR
Zalcitabine(7481-89-2)IR1
Zalcitabine(7481-89-2)Raman
Well-known Reagent Company Product InformationBack Directory
[Alfa Aesar]

2',3'-Dideoxycytidine, 98+%(7481-89-2)
[Sigma Aldrich]

7481-89-2(sigmaaldrich)
[TCI AMERICA]

2',3'-Dideoxycytidine,>98.0%(LC)(T)(7481-89-2)
7481-89-2 suppliers list
Company Name: Hebei Mojin Biotechnology Co., Ltd
Tel: +8613288715578 , +8613288715578
Website: www.mojinchemical.com
Company Name: Hebei Yanxi Chemical Co., Ltd.
Tel: +8617531190177 , +8617531190177
Website: www.chemicalbook.com/manufacturer/hebei-yanxi-chemical-283/
Company Name: hebei hongtan Biotechnology Co., Ltd
Tel: +86-86-1913198-3935 +8617331935328 , +8617331935328
Website: hbht123.com
Company Name: career henan chemical co
Tel: +86-0371-86658258
Website: https://www.coreychem.com/
Company Name: Jinan Carbotang Biotech Co.,Ltd.
Tel: +8615866703830 , +8615866703830
Website: https://www.chemicalbook.com/ShowSupplierProductsList31189/0.htm
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 18871490254
Website: www.hubeijusheng.com
Company Name: Nanjing Baifuli Technology Co., Ltd.
Tel: +86-15335185688
Website: www.chemicalbook.com/ShowSupplierProductsList1787360/0.htm
Company Name: Hubei xin bonus chemical co. LTD
Tel: 86-13657291602
Website: www.chemicalbook.com/ShowSupplierProductsList1549548/0.htm
Company Name: BOC Sciences
Tel: +1-631-485-4226
Website: www.bocsci.com/
Company Name: Chongqing Chemdad Co., Ltd
Tel: +86-023-61398051 +8613650506873 , +8613650506873
Website: http://www.chemdad.com/
Company Name: Alchem Pharmtech,Inc.
Tel: 8485655694
Website: www.chemicalbook.com/ShowSupplierProductsList454175/0.htm
Company Name: CONIER CHEM AND PHARMA LIMITED
Tel: +8618523575427 , +8618523575427
Website: http://www.conier.com/
Company Name: Shaanxi Dideu Medichem Co. Ltd
Tel: +86-29-87569266 15319487004 , 15319487004
Website: https://www.chemicalbook.com/manufacturer/shaanxi-dideu-medichem-220/
Company Name: Antai Fine Chemical Technology Co.,Limited
Tel: 18503026267 , 18503026267
Website: www.chemicalbook.com/ShowSupplierProductsList1980510/0.htm
Company Name: SHANGHAI T&W PHARMACEUTICAL CO., LTD.
Tel: +86-021-61551413 +8618813727289 , +8618813727289
Website: www.trustwe.com/
Company Name: TargetMol Chemicals Inc.
Tel: +1-781-999-5354 +1-00000000000 , +1-00000000000
Website: https://www.targetmol.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: 0551-65418671
Website: https://www.tnjchem.com
Company Name: Dideu Industries Group Limited
Tel: +86-29-89586680 +86-15129568250 , +86-15129568250
Website: www.dideu.com
Tags:7481-89-2 Related Product Information
69-74-9 20702-77-6 2022-85-7 17896-21-8 69655-05-6 71-30-7 2341-22-2 65-46-3 147-94-4 320-67-2 50-91-9 81012-87-5 101975-10-4 127308-82-1 107753-78-6 74711-43-6 139110-80-8 1179343-05-5