ChemicalBook--->CAS DataBase List--->1032900-25-6

1032900-25-6

1032900-25-6 Structure

1032900-25-6 Structure
IdentificationBack Directory
[Name]

Ceritinib (LDK378)
[CAS]

1032900-25-6
[Synonyms]

LDK378
Eritinib
ceritinib
LDK378/LDK-378
LDK378 Ceritinib
Ceritinib, >=98%
Eritinib (LDK378)
Ceritinib (LDK378)
5-Chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)p
5-Chloro-N2-[2-isopropoxy-5-Methyl-4-(4-piperidyl)phenyl]-N4-(2-isopropylsulfonylphenyl)pyriMidine-2,4-diaMine
5-chloro-N2-(2-isopropoxy-5-Methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyriMidine-2,4-diaMine
5-Chloro-N4-[2-[(1-Methylethyl)sulfonyl]phenyl]-N2-[5-Methyl-2-(1-Methylethoxy)-4-(4-piperidinyl)phenyl]-2,4-pyriMidinediaMine
2,4-Pyrimidinediamine, 5-chloro-N4-[2-[(1-methylethyl)sulfonyl]phenyl]-N2-[5-methyl-2-(1-methylethoxy)-4-(4-piperidinyl)phenyl]-
5-Chloro-N4-[2-[(1-methylethyl)sulfonyl]phenyl]-N2-[5-methyl-2-(1-methylethoxy)-4-(4-piperidinyl)phenyl]-2,4-pyrimidinediamine LDK 378
LDK 378 5-Chloro-N4-[2-[(1-methylethyl)sulfonyl]phenyl]-N2-[5-methyl-2-(1-methylethoxy)-4-(4-piperidinyl)phenyl]-2,4-pyrimidinediamine
[EINECS(EC#)]

811-457-8
[Molecular Formula]

C28H36ClN5O3S
[MDL Number]

MFCD26142648
[MOL File]

1032900-25-6.mol
[Molecular Weight]

558.135
Chemical PropertiesBack Directory
[Melting point ]

173-175°C
[Boiling point ]

720.7±70.0 °C(Predicted)
[density ]

1.251±0.06 g/cm3(Predicted)
[storage temp. ]

-20°C Freezer
[solubility ]

Chloroform (Slightly), Methanol (Slightly)
[form ]

Off-white solid.
[pka]

10.16±0.10(Predicted)
[color ]

White to Off-White
Hazard InformationBack Directory
[Description]

Ceritinib (previously LDK378l, brand name Zykadia; Novartis Pharmaceuticals) is an oral small molecule tyrosine kinase inhibitor of ALK [87]. Preclinical studies suggested that it would inhibit ROS1 as well [88, 89].
[Uses]

5-Chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine, is a Anaplastic lymphoma kinase (ALK) inhibitor.
[Definition]

ChEBI: A member of the class of aminopyrimidines that is 2,6-diamino-5-chloropyrimidine in which the amino groups at positions 2 and 6 are respectively carrying 2-methoxy-4-(piperidin-4-yl)-5-methylphenyl and 2-(isopropylsulfonyl)phenyl substituents. Used for the treatment of ALK-positive metastatic non-small cell lung cancer.
[Indications]

Ceritinib (Zykadia(R), Novartis), approved in 2014, was developed as a second-generation ALK inhibitor for patients with NSCLC who have developed crizotinib resistance. Ceritinib addresses two of the most common ALK mutants that lead to crizotinib resistance, L1196M andG1269A, but is ineffective for G1202R and F1174C variants of ALK.
[Clinical Use]

ALK-inhibitor:
Treatment of anaplastic lymphoma kinase (ALK)- positive advanced non-small cell lung cancer (NSCLC) previously treated with crizotinib
[Synthesis]

The critical step in the synthesis of ceritinib involves a latestage Buchwald¨CHartwig coupling of two advanced intermediates, anilino piperidine 50 and arylsulfonyl chloro-pyrimidine 51. While these conditions utilize microwave-mediated conditions (as does another Suzuki coupling within the sequence), which are not commonly employed for process-scale routes, to our knowledge no other conditions to have been reported to date which facilitate the construction of ceritinib.
Construction of anilino piperidine 50 commenced with 2- chloro-4-fluoro-1-methylbenzene (45). Nitration with KNO3/ H2SO4 and subsequent reaction with i-PrOH/Cs2CO3 at elevated temperatures provided the 5-isopropoxy chloride intermediate 46 in 67% over 2 steps. Suzuki coupling of 46 with 4-pyridine boronic acid (47) furnished 49 in 73% yield, which was then subjected to platinum oxide-catalyzed hydrogenation conditions in the presence of acetic acid and trifluoroacetic acid, affording the corresponding piperidinyl aniline intermediate. Immediate Bocprotection of the crude aniline provided the Buchwald¨CHartwig coupling precursor 50 in 60% over 2 steps. Next, the critical union of 50 and 51 via Buchwald¨CHartwig coupling furnished the framework of ceritinib. This was followed by removal of the Boc group with TFA and subsequent precipitation with 1 M HCl to yield ceritinib (VII) as the HCl salt in 35% yield from 50.

Synthesis_1032900-25-6

[target]

ALK
[Drug interactions]

Potentially hazardous interactions with other drugs
Anti-arrhythmics: possibly increased risk of ventricular arrhythmias with amiodarone, disopyramide, dronedarone and flecainide.
Antibacterials: possibly increased risk of ventricular arrhythmias with bedaquiline, clarithromycin, delamanid, IV erythromycin, moxifloxacin and telavancin; concentration reduced by rifampicin and possibly rifabutin - avoid.
Antidepressants: risk of QT prolongation with citalopram, escitalopram, venlafaxine and tricyclics that prolong the QT interval - avoid; concentration possibly reduced by St John’s wort - avoid.
Anti-emetics: possibly increased risk of ventricular arrhythmias with domperidone and ondansetron.
Antiepileptics: possibly increased concentration with carbamazepine - avoid; concentration possibly reduced by fosphenytoin, phenobarbital, phenytoin and primidone.
Antifungals: concentration increased by ketoconazole and possibly itraconazole, posaconazole and voriconazole - avoid or reduce ceritinib dose
Antihistamines: avoid with hydralazine due to risk of QT prolongation.
Antimalarials: possibly increased risk of ventricular arrhythmias with artemether and lumefantrine, piperaquine with artenimol, chloroquine and quinine - avoid.
Antipsychotics: possibly increased risk of ventricular arrhythmias with droperidol and haloperidol; avoid with other antipsychotics that prolong the QT interval; increased risk of agranulocytosis with clozapine - avoid.
Antivirals: concentration possibly increased by atazanavir, fosamprenavir, lopinavir, ritonavir, saquinavir and tipranavir - avoid or reduce dose; risk of QT prolongation with dasatinib - avoid.
Apomorphine: risk of QT prolongation - avoid.
Beta-blockers: possibly increased risk of ventricular arrhythmias with sotalol.
Ciclosporin: may increase ciclosporin concentration - avoid.
Cobicistat: concentration of ceritinib increased - avoid or adjust ceritinib dose.
Cytotoxics: risk of QT prolongation with arsenic trioxide, bosutinib, cabozantib, crizotinib, eribulin, lapatinib, nilotinib, osimertinib, panobinostat, pazopanib, sorafenib, sunitinib, vandetanib, vemurafenib, vinflunine - avoid; concentration possibly increased by idelalisib - avoid or adjust ceritinib dose
Enzalutamide: increases ceritinib concentration - avoid.
Methadone: possibly increased risk of ventricular arrhythmias.
Pasireotide: possibly increased risk of ventricular arrhythmias - avoid.
Ranolazine: possibly increased risk of ventricular arrhythmias - avoid.
Sirolimus: avoid concomitant use.
Tacrolimus: avoid concomitant use.
Tetrabenazine: possibly increased risk of ventricular arrhythmias - avoid.
Tizanidine: possibly increased risk of ventricular arrhythmias - avoid.
Warfarin - avoid concomitant use.
[Metabolism]

In vitro studies demonstrated that CYP3A was the major enzyme involved in the metabolic clearance of ceritinib. The main route of excretion of ceritinib and its metabolites is via the faeces. Recovery of unchanged ceritinib in the faeces accounts for a mean of 68% of a dose.
[storage]

Store at +4°C
[References]

[1]chen j, jiang c, wang s. ldk378: a promising anaplastic lymphoma kinase (alk) inhibitor. j med chem. 2013 jul 25;56(14):5673-4. doi: 10.1021/jm401005u. epub 2013 jul 9.
[2]marsilje th, pei w, chen b, lu w, uno t, jin y, jiang t, kim s, li n, warmuth m, sarkisova y, sun f, steffy a, pferdekamper ac, li ag, joseph sb, kim y, liu b, tuntland t, cui x, gray ns, steensma r, wan y, jiang j, chopiuk g, li j, gordon wp, richmond w, johnson k, chang j, groessl t, he yq, phimister a, aycinena a, lee cc, bursulaya b, karanewsky ds, seidel hm, harris jl, michellys py. synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (alk) inhibitor 5-chloro-n2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-n4-(2-(isopropylsulfonyl)phenyl)pyrimidine-2,4-diamine (ldk378) currently in phase 1 and phase 2
Questions And AnswerBack Directory
[Indications and Usage]

Ceritinib is a new ALK gene inhibitor (ALKi) developed by Novartis Pharmaceuticals; its commercial name is Zykadia, and its previous code was LDK378. It was approved by the FDA for sale on April 29, 2014, and it is used to treat anaplastic lymphoma kinase (ALK) positive transfer of crizotinib (CRZ) progress or intolerance of non-small cell lung cancer (NSCLC).
[Mechanisms of Action]

Crizotinib resistance is a major issue for patients undergoing treatment for ALK gene rearrangement positive non-small cell lung cancer. Ceritinib is a kind of ALK tyrosine kinase inhibitor. Ceritinib does not target the MET proto-oncogene, but instead inhibits the insulin-like growth factor 1 receptor and blocks proteins from promoting cancer cell development, thus inhibiting the expression of EML4-ALK and NPM-ALK fusion protein cells. It is used to treat ALK rearrangement positive NSCLC patients who have previously used Crizotinib and can overcome Crizotinib resistance. Compared to Crizotinib, Ceritinib does not inhibit MET kinase activity, but inhibits IGF-1 receptors. Whether in terms of enzyme reaction, cell analysis or Crizotinib resistant animal models, research results all show that Ceritinib is more effective than Crizotinib. Additionally, regardless of any ALK resistance mutation, Ceritinib is still highly effective. In clinical models, Ceritinib’s ALK inhibition has 20 times the tumor-fighting effect of Crizotinib. Ceritinib also has the same effect on Crizotinib resistant central nervous system lesion NSCLC. Clinical trials show that Ceritinib can effectively inhibit ALK targets, potentially affecting an unknown kinase related to drug resistance, thus overcoming Crizotinib resistance.
[Patents]

American patent numbers: US7153964,US7893074,US7964592,US8039474,US8039479,US8377921,US8703787.
Patent expiration dates:
February 26, 2021 (US7153964)
April 25, 2026 (US7893074)
January 13, 2027 (US7964592)
June 29, 2030 (US8039474, US8039479)
November 20, 2027 (US8377921)
April 29, 2032 (US8703787)
Patents belong to Novartis
[Chemical Synthesis]

Ceritinib can be synthesized using a highly convergent synthetic route that consist two sequential amination reactions on 2,4,5-trichloropyrimidine itself (Scheme 6.1). In the first amination step, 2-(isopropylsulfonyl)aniline can be isolated in three steps from fluoronitrobenzene, and in the second step, 2-isopropoxy-5-methyl-4-(piperidin-4-yl)aniline is easily isolated in four steps from 2-chloro-4-fluorotoluene. Overall yields are >28% from 2-fluoronitrobenzene and >22% from 2-chloro-4-fluorotoluene.
Synthesis of Ceritinib
Scheme 6.1 Synthesis of LDK378 (1, ceritinib). Reagents and conditions: (a) propane-2-thiol, K2CO3, DMF, 45°C ON. (b) NaBO3, AcOH, 60°C. (c) H2/Pd/C, EtOAc/MeOH (10/1). (d) NaH, DMF/DMSO, 0–20 °C. (e) KNO3, H2SO4, 0–20°C. (f ) IPA, Cs2CO3, 60°C, 24 h. (g) 4-Pyridineboronic acid, 1-BuOH (Pd2(dba)3, 2-dicyclohexylphosphine-2′-6′-dimethoxy biphenyl, MW, 150 °C. (h) AcOH/TFA; PtO2, H2, RT, 3 h. (i) Anh. HCl-dioxane, 0.1M anh. 2-methoxy ethanol, 135 °C, 2 h.
Spectrum DetailBack Directory
[Spectrum Detail]

Ceritinib (LDK378)(1032900-25-6)1HNMR
1032900-25-6 suppliers list
Company Name: XuZhou Magic Biotechnology Co., Ltd.
Tel: +undefined13921770081 , +undefined13921770081
Website: https://www.chemicalbook.com/ShowSupplierProductsList385090/0.htm
Company Name: Capot Chemical Co.,Ltd.
Tel: 571-85586718 +8613336195806 , +8613336195806
Website: http://www.capotchem.com
Company Name: Nanjing Gold Pharmaceutical Technology Co. Ltd.
Tel: 025-84209270 15906146951
Website: en.nanjing-pharmaceutical.com
Company Name: Beijing Cooperate Pharmaceutical Co.,Ltd
Tel: 010-60279497
Website: http://www.cooperate-pharm.com
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: +86-0371-55170693 +86-19937530512 , +86-19937530512
Website: https://www.tianfuchem.com/
Company Name: Hangzhou FandaChem Co.,Ltd.
Tel: 008657128800458; +8615858145714 , +8615858145714
Website: http://www.fandachem.com
Company Name: Nanjing ChemLin Chemical Industry Co., Ltd.
Tel: 025-83697070
Website: www.echemlin.cn
Company Name: Shanghai Yingrui Biopharma Co., Ltd.
Tel: +86-21-33585366 - 03@
Website: www.shyrchem.com
Company Name: Nanjing Finetech Chemical Co., Ltd.
Tel: 025-85710122 17714198479
Website: www.fine-chemtech.com
Company Name: ATK CHEMICAL COMPANY LIMITED
Tel: +undefined-21-51877795
Website: www.atkchemical.com
Company Name: Shandonghaohong biotechnology Co.,ltd.
Tel: 0635-6175299 13961496334
Website: www.haohongtech.com
Company Name: career henan chemical co
Tel: +86-0371-86658258
Website: https://www.coreychem.com/
Company Name: TianYuan Pharmaceutical CO.,LTD
Tel: +86-755-23284190 13684996853
Website: www.tianpharm.com
Company Name: Changzhou Ansciep Chemical Co., Ltd.
Tel: +86 519 86305871
Website: www.chemicalbook.com/ShowSupplierProductsList31173/0.htm
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 18871490254
Website: www.hubeijusheng.com
Company Name: Shochem(Shanghai) Co.,Ltd
Tel: 86-21-50800795
Website: www.shochem.com
Company Name: BOC Sciences
Tel: +1-631-485-4226
Website: www.bocsci.com/
Company Name: Beijing Yibai Biotechnology Co., Ltd
Tel: 0086-182-6772-3597
Website: www.chemicalbook.com/ShowSupplierProductsList187389/0.htm
Tags:1032900-25-6 Related Product Information
439081-18-2 443913-73-3 1032903-63-1 1032903-62-0 1032903-50-6 1380575-43-8 761440-16-8 64695-96-1 76697-50-2 5750-76-5 1202858-68-1 1380575-45-0 1256580-46-7 1195765-45-7 871700-17-3 183319-69-9 936563-96-1 877399-52-5