Back to ChemicalBook Home--->CAS DataBase List--->458-37-7

458-37-7

458-37-7 Structure

458-37-7 Structure
IdentificationMore
[Name]

Curcumin
[CAS]

458-37-7
[Synonyms]

Curcumin (mixture of curcumin
TURMERIC EXTRACT
1,6-Heptadiene-3,5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-,(E,E)-
5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-,(e,e)-6-heptadiene-3
5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-6-heptadiene-3
6-Heptadiene-3,5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-,(E,E)-1
curcuma
haidr
halad
haldar
halud
hydrastis
indianturmeric
kachahaldi
kurkumin
meritaearth
nci-c61325
orangeroot
souchet
yellowginger
[EINECS(EC#)]

207-280-5
[Molecular Formula]

C21H20O6
[MDL Number]

MFCD01868798
[Molecular Weight]

368.38
[MOL File]

458-37-7.mol
Chemical PropertiesBack Directory
[Appearance]

orange crystalline powder
[Melting point ]

183 °C
[mp ]

183 °C
[Boiling point ]

418.73°C (rough estimate)
[density ]

0.93
[vapor density ]

13 (vs air)
[refractive index ]

1.4155-1.4175
[Fp ]

208.9±23.6 °C
[storage temp. ]

−20°C
[solubility ]

ethanol: 10 mg/mL
[Colour Index ]

75300
[pka]

8.09(at 25℃)
[form ]

powder
[color ]

orange
[Stability:]

Stable, but may be light sensitive. Incompatible with strong oxidizing agents.
[PH Range]

Yellow (7.8) to red-brown (9.2)
[Odor]

Odorless
[Water Solubility ]

Slightly soluble (hot)
[λmax]

430nm
[Merck ]

14,2673
[BRN ]

2306965
[Major Application]

Cosmetics, drug-eluting stents, inhibition of formation of skin-wrinkles, treating alzheimer’s disease, skin diseases, coronary restenosis, diabetes, obesity, leukemia, neurofibromas, cancer, antimicrobial, antiviral, antiinflammatory, antiprostate cancer
[InChIKey]

VFLDPWHFBUODDF-FCXRPNKRSA-N
[CAS DataBase Reference]

458-37-7(CAS DataBase Reference)
[EPA Substance Registry System]

458-37-7(EPA Substance)
Safety DataBack Directory
[Hazard Codes ]

Xi
[Risk Statements ]

R36/37/38:Irritating to eyes, respiratory system and skin .
[Safety Statements ]

S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
S36:Wear suitable protective clothing .
[WGK Germany ]

3
[RTECS ]

MI5230000
[Hazard Note ]

Irritant
[TSCA ]

Yes
[HS Code ]

29145000
[Hazardous Substances Data]

458-37-7(Hazardous Substances Data)
[Toxicity]

LD50 Oral-Rat-12.200 mg/kg
Raw materials And Preparation ProductsBack Directory
【Raw materials】

Ethanol-->Acetic anhydride-->Water-->Acetylacetone-->Vanillin-->METHYL CHLORIDE-->Propylene glycol-->Butylamine-->Tributyl borate-->TURMERIC 1G [R]-->Curcuma oil-->Curcuma powder-->p-Hydroxybenzaldehyde
【Preparation Products】

Tetrahydrocurcumin-->Vanillin acetate
Hazard InformationBack Directory
[General Description]

Orange-yellow needles.
[Reactivity Profile]

CURCUMIN(458-37-7) is sensitive to light and changes in pH. This compound may react with oxidizing materials.
[Air & Water Reactions]

Slightly soluble in hot water .
[Description]

The main source of curcumin is the root of Zingiberaceae Curcuma aromatica, rhizome of Curcuma longa (Jiang Huang), Curcuma zedoaria, and Acorus calamus. Among them, Jiang Huang contains about 3–6% curcumin. The traditional Chinese medicine, Jiang Huang, is the root tuber of perennial herbaceous plant Curcuma longa L. of family Zingiberaceae. It was firstly recorded in the “Tang materia medica” (Xin Xiu Ben Cao). It is pungent, bitter, and warm and enters the liver and spleen meridians. It activates the blood, moves qi, dredges meridians, and alleviates pain. In India and other Asian countries, Jiang Huang has more than 6000?years of application history. In Japan, Jiang Huang has a long history of health care, and the people of Okinawa Island regarded Jiang Huang as a holy tribute to the emperor. Jiang Huang mainly comes from Taiwan, Fujian, Guangdong, Guangxi, Yunnan, and Tibet of China and other regions in East Asia and Southeast Asia. It grows in warm and humid climate and sunny environment with abundant rainfall and fears cold frost, drought, and flood. At present, Chinese Pharmacopoeia only included Jiang Huang and Yu Jin which contains curcumin, while curcumin is not included.
[Chemical Properties]

orange crystalline powder
[Chemical Properties]

Several species of Curcuma exist: C. xanthorrhyza, C. domestica, C. zedoafia, C. caesia and C. amada. Although all these are aromatic plants, C. longa is the one used as a flavor ingredient. The plant is originally from southern Asia and is widespread throughout India, Malaysia, Ceylon and Japan. It is a perennial herb whose rhizome yields (like that of ginger, which it also resembles) climbing stalks with leaves only or with leaves and flowers. Reproduction occurs through the splitting of the rhizome, which is the only part used (dried rhizome as is or after previously boiling in water). Turmeric has a spicy, fresh odor reminiscent of sweet orange and ginger and a slightly pungent, bitter flavor.
[Physical properties]

Appearance: orange-brown crystalline powder and tastes a little bitter. It will turn into reddish brown in alkaline solution and yellow in neutral and acidic solution. It has strong stability against the reducing agent. It has excellent pigmentation which is not easy to fade. It is sensitive to light, heat, and iron ion. When PH is greater than 8, curcumin turns from yellow to red, which can be used as a pH indicator.
Solubility: insoluble in water or diethyl ether and soluble in ethanol, propylene glycol, acetic acid, and alkali solution.
Melting point: about 183 °C.
[History]

Curcumin is one such agent that was described about two centuries ago as the yellow coloring matter from the rhizomes of Curcuma longa. Besides curcumin, more than 300 different components, including phenolics and terpenoids, have been identified in turmeric, but curcumin is one of the most important active components . Pure curcumin was prepared in 1842 by Vogel Jr. After 1870, the possible structure of curcumin was reported by several chemists in the subsequent decades. The chemical structure of curcumin as diferuloylmethane or 1,6-heptadiene-3,5-dione-1,7-bis (4-hydroxy-3-methoxyphenyl)-(1E, 6E) was reported by Milobedzka et?al. (1910). Lampe and Milobedzka (1913) reported the synthesis of curcumin. However, Srinivasan (1953) for the first time used chromatography to separate and quantify the components of curcumin .
Jiang Huang has been used for more than 6000 years; it is also well known for its medicinal value and active ingredients. But it was not until the middle of the twentieth century that scientists conducted a systematic study on their pharmacological effects. In 1949, Schraufstatter and Bernt found that curcumin has a variety of antibacterial effects against Streptococcus, Salmonella, Mucor, Mycobacterium and so on . In the 1970s, the study also found that it has lipid-lowering, anti-inflammatory, antioxidant, and antidiabetic effects. In 1980s, it was found to have antitumor effects. In the last 30 years, there are many reports about the clinical and pharmacological effects of curcumin.
At present, more than 65 human clinical trials have been completed, and more than 35 clinical trials are in progress. In addition, the study of curcumin derivatives has also become a hot topic in recent years.
[Uses]

Curcumin is the principal curcuminoid of the popular Indian spice turmeric, which is a member of the ginger family (Zingiberaceae). The curcuminoids are polyphenols and are responsible for the yellow color of turmeric. Curcumin can exist in at least two t
[Uses]

A natural phenolic compound. Potent anti-tumor agent having anti-inflammatory and anti-oxidant properties. Induces apoptosis in cancer cells and inhibits phorbol ester-induced protein kinase C (PKC) activity. Reported to inhibit production of inflammatory cytokines by peripheral blood monocytes and alveolar macrophages. Potent inhibitor of EGFR tyrosine kinase and IκB kinase. Inhibits inducible nitric oxide synthase (iNOS), cycloxygenase and lipoxygenase. Easily penetrates into the cytoplasm of cells, accumulating in membranous structures such as plasma membrane, endoplasmic reticulum and nuclear envelope.
[Uses]

antiedemic, antiinflammatory, bile stimulant; antibacterial, antifungal, lipo/cyclooxygenase inhibitor
[Uses]

For preparing curcuma paper, pH range 8-9. In the detection of boron.
[Definition]

ChEBI: A beta-diketone that is methane in which two of the hydrogens are substituted by feruloyl groups. A natural dyestuff found in the root of Curcuma longa.
[Biological Activity]

Antitumor, anti-inflammatory and antioxidant agent. Downregulates expression of reactive-oxygen-generating enzymes (cyclooxygenase, lipoxygenase, iNOS), TNF α , IL-1, IL-6, PKC, EGFR, NF- κ B, I κ B kinase and more. Upregulates expression of PPAR γ , p53, Nrf2. Also displays antimicrobial, antidiabetic neuro- and cardioprotective properties in vivo .
[Pharmacology]

1. Anti-fibrosis effects: curcumin has the effect of anti-fibrosis in the lung, liver, kidney, and so on. It could inhibit the release of various inflammatory factors and reduce the expression of collagen, laminin, hyaluronic acid, and other extracellular matrix content. It could also reduce the transforming growth factors such as TGF-尾 to inhibit cell proliferation .
2. Antitumor effects: the antitumor effect of curcumin is currently the most studied pharmacological effects and attracts a lot of attention worldwide. Curcumin has been proved to inhibit the proliferation of a variety of tumor cells through regulating a variety of transcription factors (NF-κB, AP-1, etc.), mitogen-activated protein kinase (MAPK), growth factor receptor kinase (PDGFR, VEGFR, etc.), and cyclooxygenase. It plays an important role in the cell cycle and further to inhibit proliferation. Curcumin can also inhibit the migration of tumor cells by activating caspase and inducing tumor cell apoptosis .
3. Anti-inflammatory effects: curcumin has a strong inhibitory effect on different kinds of inflammation. The mechanism might relate to the reduction of the expression of prostaglandins and leukotriene to decrease the release of various inflammatory factors. The anti-inflammatory effect of curcumin is close to that of nonsteroidal anti-inflammatory drugs and glucocorticoids, but it has higher safety and lower side effects .
4. Antimicrobial effects: curcumin has a strong inhibitory effect on bacteria, viruses, fungi, and parasites . Researchers believe that curcumin may play a role in inhibiting microbial survival and reproduction by destroying microbial cell membranes, inducing their genetic changes, and so on.
5. Hypolipidemic effect: many researchers believe that curcumin will become a hypolipidemic drug with a good prospect. It can lower the levels of total blood cholesterol and triglyceride levels, increase apolipoprotein A level, promote lowdensity lipoprotein (LDL) metabolism, and increase LDL excretion to reduce LDL body content .
6. Drug metabolism: rats were treated with a single dose of refined curcumin orally, 60–65% of which was absorbed by the gastrointestinal tract. Within 5 days, 40% of curcumin were excreted from the feces. The plasma concentration reached the peak after 3 days. The transformation of curcumin happened in the process of hepato-enteral circulation .
[Clinical Use]

1. Cholagogic effect could promote bile formation and secretion.
2. Hypolipidemic effect could reduce the level of cholesterol in the blood and prevent atherosclerosis.
3. Antibacterial and antiviral effect could inhibit Staphylococcus aureus and HIV.
4. Liver protection.
5. Anticancer and antitumor effect.
6. Help with the prevention of dementia.
7. Anti-inflammation and treatment of acne and dermatitis.
8. There are no reports of adverse effect of curcumin till now.
[Anticancer Research]

It is a yellow-colored polyphenolic compound found in turmeric and used as a foodadditive. It has antitumor effects involved in mutagenesis, cell cycle regulation,apoptosis, oncogene expression, and metastasis. Thus it regulates the initiation,promotion, and progression of disease (Hosseini and Ghorbani 2015). Its mechanismof action is diversified and convoluted. 10 μM curcumin suppresses binding of theTPA response element (TRE) by c-Jun/activator protein-1 in NIH 3 T3 cells ofmouse fibroblasts. Both protein kinase C and ornithine decarboxylase are alsoinhibited by curcumin. Inhibition of cyclooxygenase and lipoxygenase leads tosuppression of arachidonic acid cascade (Murakami et al. 1996). Curcumin is animpressive blocker of the activation of NF-κB by inhibiting IκB kinase (IKK).Curcumin also downregulates cyclin D1, suppresses the cell growth, and inducesapoptosis in prostate, breast, acute myelogenous leukemia, and multiple myelomacancer cells. It may act against psoriasis by inhibition of phosphorylase kinaseenzyme (Aggarwal and Shishodia 2004). Curcumin downregulates the TNF-inducedNF-κB-regulated gene products involved in cellular proliferation (cyclin D1, COX-2,c-myc), antiapoptosis (IAP2, IAP1, Bcl-2, XIAP, Bcl-xL, TRAF1, Bf1–1/A1,Cflip), and metastasis (MMP-9, VEGF, ICAM-1). It also suppresses the activity ofIκBα kinase, κBα degradation, IκBα phosphorylation, p65 nuclear translocation,p65 phosphorylation, and p65 acetylation (Aggarwal et al. 2008). It upregulates the expression of p53, p16, p21, EGR1 (early growth response protein1), ERK(extracellular signal-regulated kinase), JNK(c-Jun-N-terminal kinase), ElK1, Bax,and caspase 3, caspase8, and caspase9 proteins and downregulates Bcl2, mTOR,p65, Bcl-xL, AKT, EGFR, cdc2, retinoblastoma protein (Prb), c-myc, and cyclin D1proteins (Singh et al. 2016b). It can dissociate raptor from mTOR and inhibit mTORcomplex1. The inhibition of the Akt/mTOR signaling results from thedephosphorylation dependent on the calyculin A-sensitive protein phosphatase.Further, it modulating effect on AP-1 in HT-29 human colon cancer cells was foundto be a dose-dependent increase of AP-1 luciferase activity (Ravindran et al. 2009).
Curcumin is a dynamic element of turmeric, an outstanding Indian zest that isobtained from the plant Curcuma longa dried roots. Curcumin hindered PDGFR-incitedproliferation of human hepatic myofibroblasts (Zheng and Chen 2006). Theactivated mechanism by curcumin in PDGF signaling is as follows: Curcumindecreases the level of tyrosine phosphorylation of PDGFR-β and EGF-R; repressesthe action of ERK, JNK, and PI3/AKT; reduces cell growth; and induces apoptosisdose-dependently (Kunnumakkara et al. 2008). Moreover, curcumin interferes withPDGF signaling via relieving its inhibitory effect on PPARγ gene expression toreduce the cell growth; it also promotes the expression of PPARγ genes (Zhou et al.2007).
This compound is a yellow pigment produced by plants, mostly by those in theginger family (Zingiberaceae). Curcumin has enormous potential in terms of cancerprevention and treatment, and numerous studies and reviews described it as a potentantioxidant and anti-inflammatory agent (Aggarwal et al. 2003; Agrawal and Mishra2010). It inhibits biochemical activity, restraining overexpression of some signallingpathways and regulating the expression of tumour suppression genes (Cre?uet al. 2012). Temu kunci, or galangal (Boesenbergia pandurata), is a rhizome generallyused in cooking that can also be prepared to treat diarrhoea and mouth ulcers.It has been proven non-toxic to human skin fibroblast cells and offers protectiveeffects against colon cancer (Kirana et al. 2007). Turmeric (Curcuma longa) andginger (Zingiber officinale) are two plants that contain an abundance of curcuminand which have been investigated for their therapeutic properties. One piece ofresearch, for example, showed that ethanolic extract of turmeric showed anti-melanomaactivity against malignant melanomas (Danciu et al. 2015).
[Purification Methods]

Crystallise curcumin from EtOH or acetic acid. [Beilstein 8 IV 3697.]
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

C.I. 75300(458-37-7).msds
Spectrum DetailBack Directory
[Spectrum Detail]

Curcumin(458-37-7) 1H NMR
Curcumin(458-37-7) IR1
Curcumin(458-37-7) IR2
Curcumin(458-37-7) 13C NMR
Well-known Reagent Company Product InformationBack Directory
[Alfa Aesar]

Curcumin, 95% (total curcuminoid content), from Turmeric rhizome(458-37-7)
[TCI AMERICA]

Curcumin  (0.1% in ca. 95% Ethanol)(458-37-7)
458-37-7 suppliers list
Company Name: career henan chemical co
Tel: +86-371-86658258
Fax:
Website: www.coreychem.com/index.html
Company Name: Shaanxi Yikanglong Biotechnology Co., Ltd.
Tel: 17791478691
Fax:
Website: www.chemicalbook.com/ShowSupplierProductsList30927/0.htm
Company Name: Hebei Dongdu Import and Export Co. LTD
Tel: 15831048222 , 15831048222
Fax:
Website:
Company Name: Henan DaKen Chemical CO.,LTD.
Tel: +86-371-66670886
Fax:
Website: https://www.dakenchem.com/
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: 0371-55170693
Fax: 0371-55170693
Website: www.tianfuchem.net
Company Name: Shanghai Time Chemicals CO., Ltd.
Tel: +86-021-57951555 , +8618017249410
Fax: +86-021-57951555
Website: www.time-chemicals.com
Company Name: Hangzhou FandaChem Co.,Ltd.
Tel: 008615858145714
Fax: +86-571-56059825
Website: www.fandachem.com
Company Name: Nanjing Finetech Chemical Co., Ltd.
Tel: 025-85710122 17714198479
Fax: 025-85710122
Website: www.fine-chemtech.com
Company Name: Shanghai Zheyan Biotech Co., Ltd.
Tel: 18017610038
Fax:
Website: www.chemicalbook.com/ShowSupplierProductsList30845/0.htm
Company Name: Zhejiang ZETian Fine Chemicals Co. LTD
Tel: 18957127338
Fax:
Website: www.zetchem.com
Company Name: SHANDONG ZHI SHANG CHEMICAL CO.LTD
Tel: +86 18953170293
Fax: +86 0531-67809011
Website: www.zhishangchem.com
Company Name: Biochempartner
Tel: 0086-13720134139
Fax:
Website: www.biochempartner.com
Company Name: Chengdu Biopurify Phytochemicals Ltd.
Tel: 18080483897 , 18482058008
Fax:
Website: www.chemicalbook.com/ShowSupplierProductsList31191/0.htm
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 86-18871470254
Fax: 027-59599243
Website: www.hubeijusheng.com
Company Name: Accela ChemBio Inc.
Tel: (+1)-858-699-3322
Fax: (+1)-858-876-1948
Website: www.accelachem.com
Company Name: Hebei Guanlang Biotechnology Co., Ltd.
Tel: +8619930503282
Fax:
Website: www.chemicalbook.com/ShowSupplierProductsList31448/0.htm
Company Name: hdzhl biotechnology co., ltd
Tel: 86-13032617415
Fax:
Website: www.chemicalbook.com/ShowSupplierProductsList614110/0.htm
Company Name: Chongqing Chemdad Co.,Ltd
Tel: +86-19923101450
Fax:
Website: www.chemdad.com
Tags:458-37-7 Related Product Information
117-39-5 104-94-9 111-16-0 100-66-3 7723-14-0 458-37-7 1325-37-7 2050-20-6 1080-12-2 109-49-9 97-54-1 3070-53-9 3160-35-8 7786-61-0 122-84-9 456-55-3 1914-99-4