1,3-Butadiene

- CAS No.
- 106-99-0
- Chemical Name:
- 1,3-Butadiene
- Synonyms
- BUTADIENE;Butadien;1,3-Butadien;Butadieen;PYRROLYLENE;1,3-butadine;DIVINYL;BUDIENE;BIVINYL;ERYTHRENE
- CBNumber:
- CB2733269
- Molecular Formula:
- C4H6
- Molecular Weight:
- 54.09
- MOL File:
- 106-99-0.mol
- MSDS File:
- SDS
- Modify Date:
- 2025/6/13 14:48:16
Melting point | −109 °C(lit.) |
---|---|
Boiling point | −4.5 °C(lit.) |
Density | 0.62 g/mL at 20 °C(lit.) |
vapor density | 1.9 (15 °C, vs air) |
vapor pressure | 1863 mm Hg ( 21 °C) |
refractive index | 1.4292 |
Flash point | −105 °F |
storage temp. | 0-6°C |
solubility | water: soluble0.5g/L at 20°C |
form | Colorless gas |
color | Colorless to Almost colorless |
Odor Threshold | 0.23ppm |
explosive limit | 12% |
Water Solubility | 735mg/L(25 ºC) |
FreezingPoint | -108.91℃ |
Merck | 14,1509 |
BRN | 605258 |
Henry's Law Constant | (x 10-2 atm?m3/mol): 6.3 at 25 °C (Hine and Mookerjee, 1975) |
Exposure limits | TLV-TWA 10 ppm (~22 mg/m3) (ACGIH), 1000 ppm (OSHA and NIOSH); IDLH 20,000 ppm (NIOSH); A2–Suspected Human Carcinogen (ACGIH). |
Stability | Stable. Extremely flammable. May form explosive mixtures with air. Incompatible with strong oxidizing agents, copper, copper alloys. May contain stabilizer. |
InChIKey | KAKZBPTYRLMSJV-UHFFFAOYSA-N |
LogP | 1.99 at 20℃ |
CAS DataBase Reference | 106-99-0(CAS DataBase Reference) |
IARC | 1 (Vol. Sup 7, 54, 71, 97, 100F) 2012 |
EPA Substance Registry System | 1,3-Butadiene (106-99-0) |
SAFETY
Risk and Safety Statements
Symbol(GHS) | ![]() ![]() ![]() GHS02,GHS04,GHS08 |
|||||||||
---|---|---|---|---|---|---|---|---|---|---|
Signal word | Danger | |||||||||
Hazard statements | H220-H280-H340 | |||||||||
Precautionary statements | P202-P210-P280-P308+P313-P377-P410+P403 | |||||||||
Hazard Codes | F+,T,F,N | |||||||||
Risk Statements | 45-46-12-67-65-63-48/20-36/38-11-62-51/53-38 | |||||||||
Safety Statements | 53-45-62-46-36/37-26-61-33-16 | |||||||||
RIDADR | UN 1010 2.1 | |||||||||
WGK Germany | 2 | |||||||||
RTECS | EI9275000 | |||||||||
F | 4.5-31 | |||||||||
Autoignition Temperature | 788 °F | |||||||||
Hazard Note | Extremely Flammable/Carcinogen | |||||||||
DOT Classification | 2.1 (Flammable gas) | |||||||||
HazardClass | 2.1 | |||||||||
PackingGroup | II | |||||||||
HS Code | 29012410 | |||||||||
Hazardous Substances Data | 106-99-0(Hazardous Substances Data) | |||||||||
Toxicity | LC50 (inhalation) for mice 270 gm/m3/2-h, rats 285 gm/m3/4-h (quoted, RTECS, 1985). | |||||||||
IDLA | 2,000 ppm (10% LEL) | |||||||||
NFPA 704 |
|
1,3-Butadiene price More Price(10)
Manufacturer | Product number | Product description | CAS number | Packaging | Price | Updated | Buy |
---|---|---|---|---|---|---|---|
Sigma-Aldrich(India) | 743828 | 1,3-Butadiene ≥99.6% | 106-99-0 | 250G | ₹63530.33 | 2022-06-14 | Buy |
Sigma-Aldrich(India) | 695904 | 1,3-Butadiene solution 15?wt. % in hexane | 106-99-0 | 250G | ₹23474.5 | 2022-06-14 | Buy |
Sigma-Aldrich(India) | 295035 | 1,3-Butadiene ≥99% | 106-99-0 | 400G | ₹14374.73 | 2022-06-14 | Buy |
Sigma-Aldrich(India) | 295035 | 1,3-Butadiene ≥99% | 106-99-0 | 100G | ₹14569.95 | 2022-06-14 | Buy |
Sigma-Aldrich(India) | 695580 | 1,3-Butadiene solution 20?wt. % in toluene | 106-99-0 | 250G | ₹27717.2 | 2022-06-14 | Buy |
1,3-Butadiene Chemical Properties,Uses,Production
Description
1,3-Butadiene is a simple conjugated diene. It is a colourless gas with a mild aromatic or gasoline-like odour and incompatible with phenol, chlorine dioxide, copper, and crotonaldehyde. The gas is heavier than air and may travel along the ground; distant ignition is possible. It is an important industrial chemical used as a monomer in the production of synthetic rubber. Most butadiene is polymerised to produce synthetic rubber. While polybutadiene itself is a very soft, almost liquid, material, polymers prepared from mixtures of butadiene with styrene or acrylonitrile, such as ABS, are both tough and elastic. Styrene–butadiene rubber is the material most commonly used for the production of automobile tyres. Smaller amounts of butadiene are used to make nylon via the intermediate adiponitrile, other synthetic rubber materials such as chloroprene, and the solvent sulpholane. Butadiene is used in the industrial production of cyclododecatriene via a trimerisation reaction.
1,3-Butadiene structure
Chemical Properties
Butadiene is a gas, b.p. -4°C.
Physical properties
Colorless gas with a mild, aromatic or gasoline-like odor. Experimentally determined detection and recognition odor threshold concentrations were 1.0 mg/m3 (0.45 ppmv) and 2.4 mg/m3 (1.1 ppmv), respectively (Hellman and Small, 1974).
Uses
Synthetic elastomers (styrene-butadiene, polybutadiene, neoprene, nitriles), ABS resins, chemical intermediate.
1,3-Butadiene can undergo a four-component coupling reaction with aryl Grignard reagents, and alkyl fluorides in the presence of nickel catalyst to form 1,6-octadiene carbon compound substituted with alkyl and aryl groups at the 3- and 8-positions.
1,3-Butadiene is a useful diene for Diels Alder reaction.
It may be used in the synthesis of the following:
- 1-Silyl-substituted 1,3-butadienes, by [RuHCl(CO)(PCy3)2]-catalyzed silylative coupling of terminal (E)-1,3-dienes with vinylsilanes.
- Synthetic rubber and thermoplastic resins.
- Disilylated dimers by reacting with chlorosilanes.
- Octa-2,7-dien-1-ol via palladium catalyzed-hydrodimerization.
Production Methods
Except for a small amount of butadiene produced by the oxydehydrogenation of n-butane, most of butadiene is produced commercially as a by-product of ethylene production during the steam cracking of hydrocarbon streams. It is separated and purificated from other components by extractive distillation, using acetonitrile and dimethylformamide as solvents.
Definition
ChEBI: 1,3-Butadiene is a butadiene with unsaturation at positions 1 and 3. It is a chemical made from the processing of petroleum. About 75% of the manufactured 1,3-butadiene is used to make synthetic rubber. Synthetic rubber is widely used for tires on cars and trucks.
Preparation
Butadiene is obtained when n-butenes are dehydrogenated:
n-Butenes are mostly obtained from the catalytic cracking operations carried out on various petroleum fractions; thermal cracking processes usually give low yields of butenes. The dehydrogenation of n-butenes is carried out by mixing the feed with steam (which lowers the partial pressures of the reactants) and passing over a catalyst such as mixed calcium/nickel phosphate stabilized with chromium oxide at about 650??C.
General Description
1,3-Butadiene is a colorless gas with a mild, aromatic, gasoline-like odor. It is shipped as a liquefied gas under its vapor pressure. Contact with the liquid can cause frostbite. It is easily ignited. Its vapors are heavier than air and a flame can flash back to the source of leak very easily. It can asphyxiate by the displacement of air. It must be shipped inhibited as butadiene is liable to polymerization. If polymerization occurs in the container, It may violently rupture. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket. It is used to make synthetic rubber and plastics, and to make other chemicals.
Air & Water Reactions
Highly flammable. In contact with air, butadiene may form violently explosive peroxides, which can be exploded by mild heat or shock. Solid butadiene absorbs enough oxygen at sub atmospheric pressures to make 1,3-BUTADIENE explode violently when heated just above its melting point [Ind. Eng. Chem. 51:733 1959].
Reactivity Profile
A colorless gas, 1,3-BUTADIENE can react with oxidizing reagents. Upon long exposure to air 1,3-BUTADIENE forms explosive peroxides. They are sensitive to heat or shock; sudden polymerization may occur [Scott, D. A., Chem. Eng. News, 1940, 18, p.404]. Butadiene polyperoxides are insoluble in liquefied butadiene (m. p. -113° C, b. p. -2.6° C) and progressively separate leading to local concentration build up. Self-heating from a spontaneous decomposition will lead to explosion [Hendry, D. G. et al., Ind. Eng. Chem., 1968, 7, p. 136, 1145]. Explodes on contact with aluminum tetrahydroborate, potentially explosive reaction with chlorine dioxide (peroxide) and crotonaldehyde (above 180° C). Reaction with sodium nitrite forms a spontaneously flammable product [Sax, 9th ed., 1996, p. 539].
Hazard
A confirmed carcinogen. Irritant in high concentration. Highly flammable gas or liquid, explosive limits in air 2–11%. May form explosive peroxides on exposure to air. Must be kept inhibited during storage and shipment. Inhibitors often used are di-n-butylamine or phenyl-β-naphthylamine. Storage is usually under pressure or in insulated tanks <35F (<1.67C).
Health Hazard
The toxicity of 1,3-butadiene has been foundto be very low in humans and animals. It isan asphyxiant. In humans, low toxic effectsmay be observed at exposure to 2000 ppmfor 7 hours. The symptoms may be hallucinations,distorted perception, and irritation ofeyes, nose, and throat. Higher concentrationsmay result in drowsiness, lightheadedness,and narcosis. High dosages of 1,3-butadienewas toxic to animals by inhalation and skincontact. General anesthetic effects and respiratorydepression were noted. Concentrationsof 25–30% may be lethal to rats and rabbits.Contact with the liquefied gas can cause burnand frostbite.
Exposure to 1,3-butadiene caused cancersin the stomach, lungs, and blood in ratsand mice. It is suspected to be a humancarcinogen. It is a mutagen and a teratogen.
Fire Hazard
Behavior in Fire: Vapors heavier than air and may travel a considerable distance to a source of ignition and flashback. Containers may explode in a fire due to polymerization.
Materials Uses
1,3-Butadiene is noncorrosive and may be used with any common metals. Steel is recommended for tanks and piping in butadiene service by some authorities. If used with plastics, compatibility must be confirmed. Welded rather than threaded connections are similarly recommended because 1,3-butadiene tends to leak through even extremely small openings. If threaded connections are used, Schedule 80 pipe should be used. Before being exposed to 1,3-butadiene that is not inhibited, iron surfaces should be treated with an appropriate reducing agent such as sodium nitrite because polymerization is accelerated by oxygen (even if present as in ferrous oxide), as well as by heat.
Safety Profile
Confirmed carcinogen with experimental carcinogenic and neoplastigenic data. An experimental teratogen. Mutation data reported. Inhalation of high concentrations can cause unconsciousness and death. Human systemic effects by inhalation: cough, hallucinations, dstorted perceptions, changes in the visual field and other
Carcinogenicity
1,3-Butadiene is known to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in humans, including epidemiological and mechanistic studies. 1,3-Butadiene was first listed in the Fifth Annual Report on Carcinogens in 1989 as reasonably anticipated to be a human carcinogen based on sufficient evidence of carcinogenicity from studies in experimental animals. The listing was revised to known to be a human carcinogen in the Ninth Report on Carcinogens in 2000.
Environmental Fate
Surface Water. The estimated volatilization half-life of 1,3-butadiene in a model river 1 m deep,
flowing 1 m/sec and a wind speed of 3 m/sec is 3.8 h (Lyman et al., 1982).
Photolytic. The following rate constants were reported for the reaction of 1,3-butadiene and OH
radicals in the atmosphere: 6.9 x 10-11 cm3/molecule·sec (Atkinson et al., 1979) and 6.7 x 10-11
cm3/molecule·sec (Sablji? and Güsten, 1990). Atkinson and Carter (1984) reported a rate constant
of 6.7–8.4 x 10-11 cm3/molecule·sec for the reaction of 1,3-butadiene and ozone in the atmosphere.
Photooxidation reaction rate constants of 2.13 x 10-13 and 7.50 x 10-18 cm3/molecule·sec were
reported for the reaction of 1,3-butadiene and NO3 (Benter and Schindler, 1988; Sablji? and
Güsten, 1990). The half-life in air for the reaction of 1,3-butadiene and NO3 radicals is 15 h
(Atkinson et al., 1984a).
Chemical/Physical. Will polymerize in the presence of oxygen if no inhibitor is present
(Hawley, 1981).
storage
1,3-Butadiene is stored in a cool and wellventilatedlocation separated from combustibleand oxidizing substances. Smallamounts of stabilizers, such as o-dihydroxybenzene,p-tert-butylcatechol, or aliphaticmercaptans, are added to prevent its polymerizationor peroxides formation. The cylindersare stored vertically and protected againstphysical damage.
Waste Disposal
Disposal of l,3-butadiene by venting, incineration, using a suitable flare system, or by other means may be subject to permitting by federal, state, provincial, or local regulations. Persons involved with disposal of 1,3-butadiene should check with the environmental authorities having jurisdiction to determine the applicability of permitting regulations to disposal activities.
1,3-Butadiene Preparation Products And Raw materials
Raw materials
1of2
chevron_rightPreparation Products
1of8
chevron_rightSupplier | Tel | Country | ProdList | Advantage | Inquiry |
---|---|---|---|---|---|
Dorf Ketal Chemicals India Private Limited | +91-2242974777 | Maharashtra, India | 7 | 58 | Inquiry |
Vadilal Chemicals Limited | +91-7948936937 +91-7203030735 | Gujarat, India | 39 | 58 | Inquiry |
Haldia Petrochemicals Ltd | +91-3371122334 +91-9830063577 | West Bengal, India | 9 | 58 | Inquiry |
INOX Air Products Pvt. Ltd. | 91-22-41252348 | Maharashtra, India | 53 | 58 | Inquiry |
Ekta Enterprises | 08046078028 | Uttar Pradesh, India | 10 | 58 | Inquiry |
Gayatri Industries. | 91-22-28950688 | Mumbai, India | 103 | 58 | Inquiry |
Vadilal Chemicals Ltd. | 91-79-48936937 | Gujarat, India | 8 | 58 | Inquiry |
Hazel Mercantile Limited (HML) | 91-22-22755555 | Maharashtra, India | 60 | 58 | Inquiry |
Trilok Enterprises | 08069033833Ext 392 | Karnataka, India | 25 | 58 | Inquiry |
Haldia Petrochermicals Limited | 09903563113 | Kolkata, India | 1 | 58 | Inquiry |
Related articles
- 1,3-Butadiene: Overview, Applications in Synthetic Rubber and Biosynthesis
- Recent advancements allow biosynthesis of 1,3-butadiene from glucose in microorganisms, pivotal for synthetic rubber productio....
- May 13,2024
- 1,3-Butadiene: pathogenicity and synthesis
- Occupational exposure to 1,3-Butadiene poses cancer and cardiovascular risks, with no safe exposure level, and 1,3-Butadiene i....
- Dec 18,2023
- 1,3-Butadiene: Production, applications and environmental hazards
- 1,3-Butadiene is produced during the combustion of organic matter. Significant amounts of butadiene are released to the enviro....
- May 23,2023