ChemicalBook
Chinese English Japanese Germany Korea

1,2-벤즈안트라센

1,2-벤즈안트라센
1,2-벤즈안트라센 구조식 이미지
카스 번호:
56-55-3
한글명:
1,2-벤즈안트라센
동의어(한글):
벤즈안트라센;1,2-벤즈안트라센;벤즈[a]안트라센
상품명:
1,2-BENZANTHRACENE
동의어(영문):
Teraphene;NSC 30970;etraphene;TETRAPHENE;BENZANTHRENE;Benzo(a)anthr;Benzanthracene;Benzoanthracene;BENZ A ANTHRENE;1,2-Benzanthrene
CBNumber:
CB6690674
분자식:
C18H12
포뮬러 무게:
228.29
MOL 파일:
56-55-3.mol

1,2-벤즈안트라센 속성

녹는점
157-159 °C(lit.)
끓는 점
437.6 °C(lit.)
밀도
1.274 g/cm3
증기압
54.8 (de Kruif, 1980)
굴절률
1.7710 (estimate)
인화점
-18 °C
저장 조건
2-8°C
용해도
Soluble in ethanol, ether, acetone, benzene (U.S. EPA, 1985), toluene, xylenes, and other monoaromatic hydrocarbons.
물리적 상태
Solid
산도 계수 (pKa)
>15 (Christensen et al., 1975)
색상
Light Yellow
수용성
9.4ug/L(25 ºC)
Merck
14,1062
BRN
1909298
Henry's Law Constant
1.48, 3.06, 6.22, 12.0, and 20.8 at 4.1, 11.0, 18.0, 25.0, and 31.0 °C, respectively (Bamford et al., 1998)
안정성
Stable. Combustible. Incompatible with strong oxidizing agents.
CAS 데이터베이스
56-55-3(CAS DataBase Reference)
IARC
2B (Vol. 92, Sup 7) 2010
EPA
Benz[a]anthracene (56-55-3)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 T,N,Xn,F
위험 카페고리 넘버 45-50/53-67-65-38-11-63-43-36/37/38-23/24/25-39/23/24/25-52/53-40-51/53-20
안전지침서 53-45-60-61-62-36/37-24/25-23-26-33-25-16-9
유엔번호(UN No.) UN 3077 9/PG 3
WGK 독일 3
RTECS 번호 CV9275000
위험 등급 6.1(b)
포장분류 III
HS 번호 29029000
유해 물질 데이터 56-55-3(Hazardous Substances Data)
독성 LD50 for mice by intravenous injection 10 mg/kg (Patnaik, 1992).
중점관리물질 필터링 별표2-7
그림문자(GHS):
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H225 고인화성 액체 및 증기 인화성 액체 구분 2 위험 P210,P233, P240, P241, P242, P243,P280, P303+ P361+P353, P370+P378,P403+P235, P501
H304 삼켜서 기도로 유입되면 치명적일 수 있음 흡인 유해성물질 구분 1 위험
H315 피부에 자극을 일으킴 피부부식성 또는 자극성물질 구분 2 경고 P264, P280, P302+P352, P321,P332+P313, P362
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H335 호흡 자극성을 일으킬 수 있음 특정 표적장기 독성 - 1회 노출;호흡기계 자극 구분 3 경고
H336 졸음 또는 현기증을 일으킬 수 있음 특정표적장기 독성 물질(1회 노출);마취작용 구분 3 경고 P261, P271, P304+P340, P312,P403+P233, P405, P501
H341 유전적인 결함을 일으킬 것으로 의심됨 (노출되어도 생식세포 유전독성을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 생식세포 변이원성 물질 구분 2 경고 P201,P202, P281, P308+P313, P405,P501
H350 암을 일으킬 수 있음 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 1A, 1B 위험
H351 암을 일으킬 것으로 의심됨 (노출되어도 암을 일으키지 않는다는 결정적인 증거가 있는 노출경로가 있다면 노출경로 기재) 발암성 물질 구분 2 경고 P201, P202, P281, P308+P313, P405,P501
H370 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴(노출되어도 특정 표적장기 독성을 일으키지 않는다는 결정적인 노출경로가 있다면 노출경로를 기재) 특정 표적장기 독성 - 1회 노출 구분 1 위험 P260, P264, P270, P307+P311, P321,P405, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
H410 장기적 영향에 의해 수생생물에 매우 유독함 수생 환경유해성 물질 - 만성 구분 1 경고 P273, P391, P501
H411 장기적 영향에 의해 수생생물에 유독함 수생 환경유해성 물질 - 만성 구분 2
H412 장기적 영향에 의해 수생생물에 유해함 수생 환경유해성 물질 - 만성 구분 3 P273, P501
예방조치문구:
P201 사용 전 취급 설명서를 확보하시오.
P202 모든 안전 조치 문구를 읽고 이해하기 전에는 취급하지 마시오.
P210 열·스파크·화염·고열로부터 멀리하시오 - 금연 하시오.
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P261 분진·흄·가스·미스트·증기·...·스프레이의 흡입을 피하시오.
P273 환경으로 배출하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P281 요구되는 개인 보호구를 착용하시오
P331 토하게 하지 마시오.
P391 누출물을 모으시오.
P301+P310 삼켰다면 즉시 의료기관(의사)의 진찰을 받으시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P308+P313 노출 또는 접촉이 우려되면 의학적인 조치· 조언를 구하시오.
P405 밀봉하여 저장하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.

1,2-벤즈안트라센 C화학적 특성, 용도, 생산

개요

1,2-Benzanthracene is available as colourless to yellow-brown fluorescent flakes or powder. It is stable, combustible, and incompatible with strong oxidising agents. On decomposition, 1,2-benzanthracene releases carbon monoxide, carbon dioxide, acrid smoke, and fumes. Exposures may cause irritation of the eyes, skin, and respiratory tract.

화학적 성질

solid

화학적 성질

1,2-Benzanthracene is available as colorless to yellow brown fl uorescent fl akes or powder. It is stable, combustible, and incompatible with strong oxidizing agents. On decomposition, 1,2-benzanthracene releases carbon monoxide, carbon dioxide, acrid smoke, and fumes. During work, 1,2-benzanthracene can be absorbed into the body of occupational workers by inhalation, through the skin, and by ingestion. Exposures may cause irritation to the eyes, skin, and respiratory tract.

화학적 성질

Benz(a)anthracene is a colorless plate-like material which is recrystallized from glacial acetic acid or a light yellow to tan powder. PAHs are compounds containing multiple benzene rings and are also called polynuclear aromatic hydro carbons.

물리적 성질

Colorless leaflets or plates with a greenish-yellow fluorescence

용도

Benz[a]anthracene is primarily used in research.

용도

Benz[a]anthracene can be used in the synthesis of other polycyclic aromatic hydrocarbons such as tribenzo[a,c,f]tetraphene.2 It can also be used for phosphorescence applications.

용도

Benz[a]anthracene is a PAH that has carcinogenic properties. It is also used in the synthesis of anti-tumor agents.

Synthesis Reference(s)

The Journal of Organic Chemistry, 27, p. 3716, 1962 DOI: 10.1021/jo01057a528

일반 설명

Colorless leaflets or plates or coarse gold powder with a greenish-yellow fluorescence. May reasonably be expected to be a carcinogen.

공기와 물의 반응

Insoluble in water.

반응 프로필

1,2-BENZANTHRACENE may react vigorously with strong oxidizing agents. Can react exothermically with bases and with diazo compounds. Substitution at the benzene nucleus occurs by halogenation (acid catalyst), nitration, sulfonation, and the Friedel-Crafts reaction.

위험도

Confirmed carcinogen. Found in oils, waxes, smoke, food, drugs.

건강위험

There is no report on its oral toxicity.However, it may be highly toxic by intravenous administration. A lethal dose in miceis reported as 10 mg/kg. Its carcinogenicactions in animals is well established. Subcutaneous administration of this compoundin mice resulted in tumors at the sites ofapplication
Flesher and Myers (1990) have correlatedcarcinogenic activity of benzo[a]anthraceneto its bioalkylation at the site of injection.Male rats were dosed subcutaneously andthe tissue in contact with the hydrocarbonwas visualized after 24 hours under UV light.Bioalkylation or the biochemical introductionof an alkyl group occurred at the mesoanthracenic centers, which are the most reactivesites in the molecule.

건강위험

ACUTE/CHRONIC HAZARDS: When heated to decomposition 1,2-BENZANTHRACENE emits acrid smoke and irritating fumes.

건강위험

Exposures to 1,2-benzanthracene is known to cause kidney damage. However, published data on the neurotoxicity, teratogenicity, reproductive toxicity, and mutagenicity of 1,2-benzanthracene is not available.

화재위험

Flash point data for 1,2-BENZANTHRACENE are not available. 1,2-BENZANTHRACENE is probably combustible.

Safety Profile

Confirmed carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data by skin contact and other routes. Poison by intravenous route. Human mutation data reported. It is found in oils, waxes, smoke, food, drugs. When heated to decomposition it emits acrid smoke and irritating fumes.

잠재적 노출

Benz(a)anthracene is a contaminant and does not have any reported commercial use or application, although one producer did report the substance for the Toxic Substances Control Act Inventory. Benz(a)anthracene has been reported present in cigarette smoke condensate, automobile exhaust gas; soot; and the emissions from coal and gas works and electric plants. Benz(a)anthracene also occurs in the aromatic fraction of mineral oil, commercial solvents, waxes, petrolatum, creosote, coal tar; petroleum asphalt; and coal tar pitch. Microgram quantities of benz(a)anthracene can be found in various foods, such as charcoal broiled, barbecued, or smoked meats and fish; certain vegetables and vegetable oils, roasted coffee, and coffee powders. Human subjects are exposed to benz(a) anthracene through either inhalation or ingestion. Workers at facilities with likely exposure to fumes from burning or heating of organic materials have a potential for exposure to benz(a)anthracene. Consumers can be exposed to this chemical through ingestion of various foods, with concentrations of 100 μg/kg in some instances. Cigarette smoke condensate has quantities of benz(a)anthracene that range from 0.03 to 4.6 μg/g. Benz(a)anthracene is found in the atmosphere at levels that vary with geography and climatology. These values can range from up to 136 μg/1000 m3 in summer to 361 μg/1000 m3 in winter. Drinking water samples may contain up to 0.023 μg/L benz(a)anthracene, and surface waters have been found to contain 0.004 0.185 μg/L. The soil near industrial centers has been shown to contain as much as 390 μg/kg of Benz(a)anthracene, whereas soil near highways can have levels of up to 1500 μg/kg, and areas polluted with coal tar pitch can reach levels of 2500 mg/kg.

Carcinogenicity

BA’s metabolites are genotoxic in the Ames mutation test and caused unscheduled DNA synthesis in primary rat hepatocytes.In an in vivo mutagenic assay, male CD rats (6/group) were dosed three times with BA over a 24-hour interval by intratracheal instillation. Lung cells were enzymatically separated and used to determine the frequency of DNA adducts, sister chromatid exchanges (SCEs), and micronuclei. BA induced DNA adducts, SCEs, and micronuclei in this rat lung cell system.
Benz(a)anthracene is designated an A2- suspected human carcinogen by ACGIH and has no assigned threshold limit value.

Source

Concentrations in 8 diesel fuels ranged from 0.018 to 5.9 mg/L with a mean value of 0.93 mg/L (Westerholm and Li, 1994). Identified in Kuwait and South Louisiana crude oils at concentrations of 2.3 and 1.7 ppm, respectively (Pancirov and Brown, 1975).
The concentration of benzo[a]anthracene in coal tar and the maximum concentration reported in groundwater at a mid-Atlantic coal tar site were 3,900 and 0.0079 mg/L, respectively (Mackay and Gschwend, 2001). Based on laboratory analysis of 7 coal tar samples, benzo[a]anthracene concentrations ranged from 600 to 5,100 ppm (EPRI, 1990). Detected in 1-yr aged coal tar film and bulk coal tar at concentrations of <1,500 and 850 mg/kg, respectively (Nelson et al., 1996). Lehmann et al. (1984) reported benzo[a]anthracene concentrations of 7.3 mg/g in a commercial anthracene oil and 8,400 to 13,100 mg/kg in three road tars. Also identified in high-temperature coal tar pitches used in roofing operations at concentrations ranging from 169,000 to 324,000 mg/kg (Malaiyandi et al., 1982). Detected in asphalt fumes at an average concentration of 53.49 ng/m3 (Wang et al., 2001).
Nine commercially available creosote samples contained benzo[a]anthracene at concentrations ranging from 39 to 950 mg/kg (Kohler et al., 2000).
Schauer et al. (2001) measured organic compound emission rates for volatile organic compounds, gas-phase semi-volatile organic compounds, and particle-phase organic compounds from the residential (fireplace) combustion of pine, oak, and eucalyptus. The particle-phase emission rates of benzo[a]anthracene were 1.22 mg/kg of pine burned, 0.630 mg/kg of oak burned, and 0.533 mg/kg of eucalyptus burned. The gas-phase emission rate was 0.032 mg/kg of eucalyptus burned.
Gas-phase tailpipe emission rates from gasoline-powered automobiles with and without catalytic converters were 0.181 and 4.80 μg/km, respectively (Schauer et al., 2002).
Under atmospheric conditions, a low rank coal (0.5–1 mm particle size) from Spain was burned in a fluidized bed reactor at seven different temperatures (50 °C increments) beginning at 650 °C. The combustion experiment was also conducted at different amounts of excess oxygen (5 to 40%) and different flow rates (700 to 1,100 L/h). At 20% excess oxygen and a flow rate of 860 L/h, the amount of benzo[a]anthracene emitted ranged from 91.2 ng/kg at 650 °C to 461.3 ng/kg at 750 °C. The greatest amount of PAHs emitted were observed at 750 °C (Mastral et al., 1999).

환경귀착

Biological. In an enclosed marine ecosystem containing planktonic primary production and heterotrophic benthos, the major metabolites were water soluble and could not be extracted with organic solvents. The only degradation product identified was benzo[a]anthracene-7,12-dione (Hinga and Pilson, 1987). Under aerobic conditions, Cunninghanella elegans degraded benzo[a]anthracene to 3,4-, 8,9-, and 10,11-dihydrols (Kobayashi and Rittman, 1982; Riser- Roberts, 1992).
Soil. The half-lives for benzo[a]anthracene in a Kidman sandy loam and McLaurin sandy loam were 261 and 162 d, respectively (Park et al., 1990).
Surface Water. In a 5-m deep surface water body, the calculated half-lives for direct photochemical transformation at 40 °N latitude, in the midsummer during midday were 4.8 and 22.8 h with and without sediment-water partitioning, respectively (Zepp and Schlotzhauer, 1979).
Photolytic. Benzo[a]anthracene-7,12-dione formed from the photolysis of benzo[a]an-thracene (λ = 366 nm) in an air-saturated, acetonitrile-water solvent (Smith et al., 1978).
Chemical/Physical. Benzo[a]anthracene-7,12-dione and a monochlorinated product were formed during the chlorination of benzo[a]anthracene. At pH 4, the reported half-lives at chlorine concentrations of 0.6 and 10 mg/L were 2.3 and <0.2 h, respectively (Mori et al., 1991). When an aqueous solution containing benzo[a]anthracene (16.11 μg/L) was chlorinated for 6 h using chlorine (6 mg/L), the concentration was reduced 53% (Sforzolini et al., 1970).

저장

Store in a cool, dry, well-ventilated area away from incompatible substances. Keep containers tightly closed

운송 방법

UN2811 Toxic solids, organic, n.o.s., Hazard Class: 6.1; Labels: 6.1—Poisonous materials, Technical Name Required.

Purification Methods

Crystallise 1,2-benzanthracene from MeOH, EtOH or *benzene (charcoal), then chromatograph it on alumina from sodium-dried *benzene (twice), using vacuum distillation to remove *benzene. Final purification is by vacuum sublimation. [Beilstein 5 IV 2549.]

Toxicity evaluation

Benz[a]anthracene is not synthesized commercially. The primary source of many PAHs in air is the combustion of wood and other fuels. PAHs released into the atmospheremay deposit onto soil or water. In surface water, PAHs can volatilize, bind to suspended particles, or accumulate in aquatic organisms. Adsorption to solid particles in the soil extended their half-life, benz[a]anthracene’s half-life in Kidman sandy loam is 261 days. The vapor pressure of benz[a]anthracene is 1.9×106mmHg at 25°C, and it has an atmospheric half-life of about 7.7 h due primarily to photochemical degradation.

비 호환성

Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Powder can form an explosive mixture with air.

폐기물 처리

Atomize into incinerator with a flammable liquid.

주의 사항

Workers should wash thoroughly after using and handling 1,2-benzanthracene. Use only in a well-ventilated area. Minimize dust generation and accumulation. Avoid contact with the eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation.

1,2-벤즈안트라센 준비 용품 및 원자재

원자재

준비 용품


1,2-벤즈안트라센 공급 업체

글로벌( 140)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Henan DaKen Chemical CO.,LTD.
+86-371-66670886
info@dakenchem.com China 15426 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693
0371-55170693 info@tianfuchem.com China 22607 55
TianYuan Pharmaceutical CO.,LTD
+86-755-23284190 13684996853
+86-755-23284190 sales@tianpharm.com CHINA 305 58
career henan chemical co
15093356674 0371-55982848
0086-371-86658258 factory@coreychem.com CHINA 29863 58
Richest Group Ltd
18017061086
oled@richest-group.com CHINA 5606 58
Hefei TNJ Chemical Industry Co.,Ltd.
0551-65418671
0551-65418697 sales@tnjchem.com CHINA 37441 58
Dayang Chem (Hangzhou) Co.,Ltd.
17705817739 +86-571-88938639
+86-571-88938652,+86-571- 88492614 info@dycnchem.com CHINA 52932 58
Henan Alfa Chemical Co., Ltd
+8619139973225
adam@alfa-chemical.com;sales4@alfachem.cn;alfa8@alfachem.cn China 12043 58
ShanDong Look Chemical Co.,Ltd.
+8617653113219
sales01@sdlookchemical.com China 2736 58
Alfa Chemistry
+1-516-662-5404
1-516-927-0118 inquiry@alfa-chemistry.com United States 10563 58

1,2-벤즈안트라센 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved