Welcome to chemicalbook!
+1 (818) 612-2111
Inquriy
Try our best to find the right business for you.
Do not miss inquiry messages Please log in to view all inquiry messages.

Welcome back!

RFQ
skype
MY Account
Top
Postion:Product Catalog >Food Additives>Gum base agent>Polyethylene
Polyethylene
  • Polyethylene
  • Polyethylene
  • Polyethylene
  • Polyethylene
  • Polyethylene

Polyethylene NEW

Price Get Latest Price
Package 25KG
Min. Order: 1KG
Supply Ability: 50000KG/month
Update Time: 2023-10-19

Product Details

Product Name: Polyethylene CAS No.: 9002-88-4
EC-No.: 618-339-3 Min. Order: 1KG
Purity: 99% Supply Ability: 50000KG/month
Release date: 2023/10/19

CAS:9002-88-4
MF:(C2H4)n
MW:28.05316
EINECS:618-339-3
Product Categories:Industrial Raw MaterialsCertified Reference Materials (CRMs);IRMM/BCR Certified Reference Materials;EnvironmentalCertified Reference Materials (CRMs);Non-metalsAlphabetic;POLB - POLY;Reference/Calibration Standards;Application CRMs;Certified Reference Materials (CRMs);Industrial Raw Materials;Industrial Raw MaterialsApplication CRMs;Matrix CRMs;Non-metalsCertified Reference Materials (CRMs);Polymer Standards;Hydrophobic Polymers;Polymers;Ethylene;Hydrophobic Polymers;Olefins;Alphabetic;Organic Soluble Polymers;P;POLB - POLYPolymer Standards;Polyethylene;Materials Science;Polymer Science
Mol File:9002-88-4.mol
Article illustration

Polyethylene Chemical Properties
Melting point 92 °C
Boiling point 48-110 °C(Press: 9 Torr)
density 0.962 g/mL at 25 °C
Fp 270 °C
storage temp. -20°C
form powder
Specific Gravity0.95
color White
Water Solubility Soluble in acetone and benzene. Insoluble in water.
Merck 14,7567
Stability:Stable, but breaks down slowly in uv light or sunlight. Incompatible with halogens, strong oxidizing agents, benzene, petroleum ether, aromatic and chlorinated hydrocarbons, lubricating oils.
NIST Chemistry ReferencePolyethylene(9002-88-4)
IARC3 (Vol. 19, Sup 7) 1987
EPA Substance Registry SystemPolyethylene (9002-88-4)
Polyethylene Usage And Synthesis
Chemical PropertiesChemical and physical properties are markedly affected by increasing density, which is affected by the shape and spacing of the molecular chain. Low-density materials have highly branched and widely spaced chains, whereas high-density materials have comparatively straight and closely aligned chains. Low-density polyethylene (0.926–0.9409 g/cm3) is soluble in organic solvents at temperatures higher than 200°F. It is insoluble at room temperature. High-density polyethylene (0.041–0.965 g/cm3) is hydrophobic, permeable to gas, and has high electrical resistivity.
Low molecular weight polyethylenes have excellent electrical resistance and resistance to water and to most chemicals. Medium molecular weight polymers are waxes miscible with paraffin wax, and polyethylene polymers whose molecular weights are higher than 10,000 are the familiar tough and strong resins that are flexible or stiff. By varying the catalyst and methods of polymerization, properties such as density, crystallinity, molecular weight, and polydispersity can be regulated over wide ranges. Polymers with densities ranging from approximately 0.910 to 0.925 g/cm3 are low-density polyethylenes; those with densities ranging from 0.926 to 0.940 g/cm3 are medium-density polyethylenes; and those with densities ranging from 0.941 to 0.965 g/cm3 and higher are high-density polyethylenes.

Article illustration
As the crystallinity or density increases, the products generally become stiffer and stronger and have a high softening temperature and high resistance to penetration by liquids and gases. At the same time, they lose some of their resistance to tear and environmental stress cracking.
High-density PE (HDPE) is a chemically pure, porous plastic implant material that can perform supportive functions. The material has good tissue biocompatibility and permits ingrowth of connective tissue with related vascularization. The material is being used more frequently in nasal surgery.
Polyethylene can be cross-linked by irradiation (electron beam, gamma, or X radiation) or by free radical catalysts such as peroxides.

UsesPolyethylene is used in the development of plastics.
Definition

Polyethylene is a flexible waxy translucentpolyalkene thermoplastic made in avariety of ways producing a polymerof varying characteristics. In the ICIprocess, ethene containing a trace of oxygen is subjected to a pressure inexcess of 1500 atmospheres and atemperature of 200°C. Low-densitypolyethene (r.d. 0.92) has a formulaweight between 50 000 and 300 000,softening at a temperature around110°C, while the high-density polythene(r.d. 0.945–0.96) has a formulaweight up to 3 000 000, softeningaround 130°C. The low-density polymeris less crystalline, being more atactic.Polyethene is used as aninsulator; it is acid resistant and iseasily moulded and blown.
Polyethylene is a water-repellent, white, tough, leathery, thermoplastic resin very similar in appearance to paraffin wax. Properties vary from a viscous liquid at low molecular weights to a hard waxlike substance at high molecular weights. It is used as a coating for glass bottles and fiberglass fabrics (special treatments for glass are required to obtain good adhesion between polyethylene and glass) and is also used as an injection-molding material for ceramics.
In the polymerization process, the double bond connecting the carbon atoms is broken. Under the right conditions, these bonds reform with other ethylene molecules to form long molecular chains. Ethylene copolymers, EVA, and EEA are made by the polymerization of ethylene units with randomly distributed comonomer groups, such as vinyl acetate (VA) and ethyl acrylate (EA).

UsesPolyethylene (PE) is a thermoplastic polymer consisting of long hydrocarbon chains. PE is used in a number of applications including flexible film packaging produced by the blown film process. Polyethylene is used to regulate viscosity, suspension properties, and general stability in cosmetic formulations. Typical applications included specialty injection molded parts, in these fields Polyethylene has a wide range of uses:
Injection and blow molded toys, housewares and lids.
Injection molded car seats, mower parts and pails.
Injection molded, thin-walled containers and housewares.
Hot melt coating for paper, additive in cast moldings, candles, oil-based inks and hot melt adhesives.
Additive to unsaturated polyesters, epoxides and other polymers to impart the unique properties of UHMWPE. Used in industrial parts, coatings and wear surfaces at 10-40 wt. %.
Film applications having good drawdown and toughness.
Mold release additive, lubricant in rubber processing, extrusion and calendering aid for PVC and dispersing aid for color concentrates.
Bearings, gears, bushings and other moving parts.
Laboratory tubing; in making prostheses; electrical insulation; packaging materials; kitchenware; tank and pipe linings; paper coatings; textile stiffeners.
polyethylene is used to regulate viscosity, suspension properties, and general stability in cosmetic formulations. It is derived from petroleum gas or dehydration of alcohol.

Article illustration

Industrial uses

Polyethylene thermoplastic resins include lowdensity polyethylenes (LDPE), linear low-density polyethylenes (LLDPE), high-density polyethylenes (HDPE), and ethylene copolymers, such as ethylene-vinyl acetate (EVA) and ethylene- ethyl acrylate (EEA), and ultrahighmolecular- weight polyethylenes (UHMWPE). The basic properties of polyethylenes can be modified with a broad range of fillers, reinforcements, and chemical modifiers, such as thermal stabilizers, colorants, flame retardants, and blowing agents. Major application areas for polyethylenes are packaging, industrial containers, automotive, materials handling, consumer products, medical products, wire and cable insulation, furniture, housewares, toys, and novelties.
LDPE, the first of the polyethylenes to be developed, has good toughness, flexibility, low-temperature impact resistance, clarity in film form, and relatively low heat resistance. Like the higher-density grades, LDPE has good resistance to chemical attack.
One of the fastest-growing plastics is linear LLDPE, used mainly in film applications but also suitable for injection, rotational, and blow molding. Properties of LLDPE are different from those of conventional LDPE and HDPE in that impact, tear, and heat-seal strengths and environmental stress-crack resistance of LLDPE are significantly higher. Major uses at present are grocery bags, industrial trash bags, liners, and heavy-duty shipping bags for such products as plastic resin pellets.
Rigidity and tensile strength of the HDPE resins are considerably higher than those properties in the low- and medium-density materials. Impact strength is slightly lower, as is to be expected in a stiffer material, but values are high, especially at low temperatures, compared with those of many other thermoplastics.
HDPE resins are available with broad, intermediate, and narrow molecular-weight distribution, which provides a selection to meet specific performance requirements. As with the other polyethylene grades, very-high-molecular- weight copolymers of HDPE resins are available with improved resistance to stress cracking.
Applications of HDPE range from film products to large, blow-molded industrial containers. The largest market area is in blowmolded containers for packaging milk, fruit juices, water, detergents, and household and industrial liquid products. Other major uses include high-quality, injection-molded housewares, industrial pails, food containers, and tote boxes; extruded water and gas-distribution pipe, and wire insulation; and structural-foam housings. HDPE resins are also used to rotationally mold large, complex-shaped products such as fuel tanks, trash containers, dump carts, pallets, agricultural tanks, highway barriers, and water and waste tanks for recreational vehicles.

Packing &shipping&Payment

Packing:25kg/drum
Shipping:by sea or by air
Payment:T/T,western union,moneygram
Packaging Details drum
Port:Tianjin
Lead Time :
Quantity(Kilograms)1 - 10000>10000
Est. Time(days)5To be negotiated

Article illustration

Article illustrationCompany information
Hebei Mojin Biotechnology Co., Ltd, Our company is a professional in 4'-Methylacetophenone,Levamisole hydrochloride ,N-Methylformamide and other chemical reagents research and development production enterprises. Our business covers more than 30 countries, most of the big customers come from Europe, America and other countries in the world, we can guarantee the quality and price. In recent decades, with the efforts of all employees, we have established many cooperative companies in shandong, henan, guangdong and other places. Our corporate purpose is based on the market, enhance the strength, take the road of scientific and environmental sustainable development, relying on the country. Technology r & d center, increase the investment in r & d, based on the domestic market, expand the international market, manufacturing quality products, sincere service to the society, into a modern, ecological, scientific and technological enterprise world.

Article illustrationAdvantage
In stock

Article illustration






Company Profile Introduction

-

You may like

Recommended supplier

Product name Price   Suppliers Update time
$0.00/1kg
VIP1Y
Hebei Kingfiner Technology Development Co.Ltd
2023-11-23
$100.00/1bag
Hebei Fengqiang Trading Co., LTD
2023-09-14
$10.00/1kg
VIP1Y
Henan Bao Enluo International TradeCo.,LTD
2023-07-07
$977.00/1Tons
VIP2Y
Hebei Dangtong Import and export Co LTD
2023-03-06
$0.00/1KG
VIP2Y
Hebei Guanlang Biotechnology Co., Ltd.
2023-01-10
$50.00/50TON
Molokomalapatrading Ltd.
2022-07-10
$10.00/1KG
Hebei baicao biology science and technology co., ltd
2022-05-12
$10.00/1KG
Hebei Zhanyao Biotechnology Co. Ltd
2021-10-15
$10.00/1g
VIP3Y
Hubei Aumei New Material Co., Ltd.
2021-08-30
$15.00/1KG
Zhuozhou Wenxi import and Export Co., Ltd
2021-07-11
  • Since: 2017-12-08
  • Address: Building A, Enjoy city, Zhongshan East Road, Shijiazhuang city, Hebei province
INQUIRY
xing
13288715578
sales@hbmojin.com