ChemicalBook >> journal list >> ACS Central Science >>article
ACS Central Science

ACS Central Science

IF: 12.7
Download PDF

Deep Learning-Predicted Dihydroartemisinin Rescues Osteoporosis by Maintaining Mesenchymal Stem Cell Stemness through Activating Histone 3 Lys 9 Acetylation

Published:18 October 2023 DOI: 10.1021/acscentsci.3c00794
Ruoxi Wang, Yu Wang, Yuting Niu, Danqing He, Shanshan Jin, Zixin Li, Lisha Zhu, Liyuan Chen, Xiaolan Wu, Chengye Ding, Tianhao Wu, Xinmeng Shi, He Zhang, Chang Li, Xin Wang, Zhengwei Xie*, Weiran Li* and Yan Liu*, 

Abstract

Maintaining the stemness of bone marrow mesenchymal stem cells (BMMSCs) is crucial for bone homeostasis and regeneration. However, in vitro expansion and bone diseases impair BMMSC stemness, limiting its functionality in bone tissue engineering. Using a deep learning-based efficacy prediction system and bone tissue sequencing, we identify a natural small-molecule compound, dihydroartemisinin (DHA), that maintains BMMSC stemness and enhances bone regeneration. During long-term in vitro expansion, DHA preserves BMMSC stemness characteristics, including its self-renewal ability and unbiased differentiation. In an osteoporosis mouse model, oral administration of DHA restores the femur trabecular structure, bone density, and BMMSC stemness in situ. Mechanistically, DHA maintains BMMSC stemness by promoting histone 3 lysine 9 acetylation via GCN5 activation both in vivo and in vitro. Furthermore, the bone-targeted delivery of DHA by mesoporous silica nanoparticles improves its therapeutic efficacy in osteoporosis. Collectively, DHA could be a promising therapeutic agent for treating osteoporosis by maintaining BMMSC stemness.

Dihydroartemisinin, as predicted by deep learning, rescues osteoporosis by preserving the stemness of bone marrow mesenchymal stem cells through the activation of Histone 3 Lys 9 acetylation.

Similar articles

IF:5.6

D-tryptophan triggered epithelial-mesenchymal transition by activating TGF-β signaling pathway

Food Science and Human Wellness Chong Wang, Fangting Wang,etc Published: 1 September 2022
IF:5.3

Deep Learning and Single‐Cell Sequencing Analyses Unveiling Key Molecular Features in the Progression of Carotid Atherosclerotic Plaque

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE Han Zhang, Yixian Wang,etc Published: 25 November 2024