Kohlenmonoxid

CARBON MONOXIDE Struktur
630-08-0
CAS-Nr.
630-08-0
Bezeichnung:
Kohlenmonoxid
Englisch Name:
CARBON MONOXIDE
Synonyma:
CO;Carbone;Carbon oxide;Flue gas;Kohlenmonoxid;Carbon monooxide;Kohlenstoffmonoxid;carbon monoxide gas;fluegas;NA 9202
CBNumber:
CB1300110
Summenformel:
CO
Molgewicht:
28.01
MOL-Datei:
630-08-0.mol

Kohlenmonoxid Eigenschaften

Schmelzpunkt:
−205 °C(lit.)
Siedepunkt:
−191.5 °C(lit.)
Dichte
d4-195 (liq) 0.814; d (gas) 0.968 (air = 1.000); d40 at 760 mm: 1.250 g/liter
Dampfdichte
0.97 (vs air)
Dampfdruck
>760 mmHg at 20 °C
Brechungsindex
1.0003
Löslichkeit
At 20 °C and at a pressure of 101 kPa, 2.266 volumes of carbon monoxide dissolve in 100 volumes of water.
Aggregatzustand
colorless gas
Farbe
colorless
Geruch (Odor)
Odorless gas
Explosionsgrenze
74%
Wasserlöslichkeit
mL/100mL H2O: 3.3 (0°C), 2.3 (20°C) [MER06]
Merck 
13,1823
BRN 
3587264
Expositionsgrenzwerte
TLV-TWA 50 ppm (~55 mg/m3) (ACGIH, MSHA, and OSHA); STEL 400 ppm (ACGIH); IDLH 1500 ppm (NIOSH).
InChIKey
UGFAIRIUMAVXCW-UHFFFAOYSA-N
CAS Datenbank
630-08-0(CAS DataBase Reference)
EPA chemische Informationen
Carbon monoxide (630-08-0)
Sicherheit
  • Risiko- und Sicherheitserklärung
  • Gefahreninformationscode (GHS)
Kennzeichnung gefährlicher F+,T
R-Sätze: 61-12-23-48/23
S-Sätze: 53-45
RIDADR  UN 1016 2.3
WGK Germany  1
RTECS-Nr. FG3500000
Selbstentzündungstemperatur 609 °C
DOT Classification 2.3, Hazard Zone D (Gas poisonous by inhalation)
HazardClass  2.3
Giftige Stoffe Daten 630-08-0(Hazardous Substances Data)
Toxizität LC50 inhal (rat) 1807 ppm (2065 mg/m3; 4 h)
LCLO inhal (man) 4000 ppm (4570 mg/m3; 30 min)
PEL (OSHA) 50 ppm (55 mg/m3)
TLV-TWA (ACGIH) 25 ppm (29 mg/m3)
IDLA 1,200 ppm
Bildanzeige (GHS) GHS hazard pictogramsGHS hazard pictogramsGHS hazard pictogramsGHS hazard pictograms
Alarmwort Achtung
Gefahrenhinweise
Code Gefahrenhinweise Gefahrenklasse Abteilung Alarmwort Symbol P-Code
H220 Extrem entzündbares Gas. Entzündbare Gase Kategorie 1 Achtung P210, P377, P381, P403
H280 Enthält Gas unter Druck; kann bei Erwärmung explodieren. Gase unter Druck verflüssigtes Gas Warnung P410+P403
H331 Giftig bei Einatmen. Akute Toxizität inhalativ Kategorie 3 Achtung P261, P271, P304+P340, P311, P321,P403+P233, P405, P501
H372 Schädigt bei Hautkontakt und Verschlucken die Organe bei längerer oder wiederholter Exposition. Spezifische Zielorgan-Toxizität (wiederholte Exposition) Kategorie 1 Achtung P260, P264, P270, P314, P501
Sicherheit
P202 Vor Gebrauch alle Sicherheitshinweise lesen und verstehen.
P210 Von Hitze, heißen Oberflächen, Funken, offenen Flammen und anderen Zündquellenarten fernhalten. Nicht rauchen.
P308+P313 BEI Exposition oder falls betroffen: Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.
P403+P233 An einem gut belüfteten Ort aufbewahren. Behälter dicht verschlossen halten.
P410+P403 Vor Sonnenbestrahlung schützen. An einem gut belüfteten Ort aufbewahren.

Kohlenmonoxid Chemische Eigenschaften,Einsatz,Produktion Methoden

ERSCHEINUNGSBILD

GERUCHLOSES GESCHMACKLOSES, FARBLOSES KOMPRIMIERTES GAS

PHYSIKALISCHE GEFAHREN

Das Gas mischt sich leicht mit Luft. Bildung explosionsfähiger Gemische. Das Gas durchdringt leicht Wände und Decken.

CHEMISCHE GEFAHREN

Kann heftig mit Sauerstoff, Acetylen, Chlor, Fluor und Stickoxiden reagieren.

ARBEITSPLATZGRENZWERTE

TLV: 25 ppm (als TWA). BEI vorhanden (ACGIH 2006).
MAK: 30 ppm; 35 mg/m? Spitzenbegrenzung: überschreitungsfaktor II(1); Schwangerschaft: Gruppe B; BAT vorhanden; (DFG 2008).

AUFNAHMEWEGE

Aufnahme in den Körper durch Inhalation.

INHALATIONSGEFAHREN

Eine gesundheitsschädliche Konzentration des Gases in der Luft wird beim Entweichen aus dem Behälter sehr schnell erreicht.

WIRKUNGEN BEI KURZZEITEXPOSITION

WIRKUNGEN BEI KURZZEITEXPOSITION:
Möglich sind Auswirkungen auf das Blut mit Carboxyhämoglobinvergiftung und Herzfunktionsstörungen. Exposition in hohen Konzentrationen kann zum Tod führen. ärztliche Beobachtung notwendig.

WIRKUNGEN NACH WIEDERHOLTER ODER LANGZEITEXPOSITION

Möglich sind Auswirkungen auf das Herzkreislaufsystem und das Zentralnervensystem. Kann fruchtbarkeitsschädigend oder entwicklungsschädigend wirken.

LECKAGE

Gefahrenbereich verlassen! Zündquellen entfernen. Fachmann zu Rate ziehen! Persönliche Schutzausrüstung: Umgebungsluftunabhängiges Atemschutzgerät. Belüftung.

R-Sätze Betriebsanweisung:

R61:Kann das Kind im Mutterleib schädigen.
R12:Hochentzündlich.
R23:Giftig beim Einatmen.
R48/23:Giftig: Gefahr ernster Gesundheitsschäden bei längerer Exposition durch Einatmen.

S-Sätze Betriebsanweisung:

S53:Exposition vermeiden - vor Gebrauch besondere Anweisungen einholen.
S45:Bei Unfall oder Unwohlsein sofort Arzt zuziehen (wenn möglich, dieses Etikett vorzeigen).

Beschreibung

Carbon monoxide is a colorless, odorless, tasteless, flammable, toxic gas.Carbon monoxide is produced when carbon and carbon compounds undergo incomplete combustion. The inefficient combustion of carbon fuels for heating results in the production of carbon monoxide, which may result in high CO concentrations in indoor environments. The use of carbon fuel heaters without adequate ventilation can result in deadly conditions. Each year several hundred people in the United States die from CO poisoning, and 10,000 patients are treated in hospitals for CO exposure.Cars and other forms of transportation are a major source of carbon monoxide pollution in cities.

Chemische Eigenschaften

Carbon monoxide, CO, is a colorless,odorless, toxic gas. It is soluble in alcohol and cuprix chloride solutions, but insoluble in water. Carbon monoxide is formed by the incomplete oxidation of carbon. It is found in mines and carexhaust. Carbon monoxide is used in metallurgy as a reducing agent in smelting operations, in the production of carbony is for the separation of various metals, as an ingredient in the synthesis of phosgene,and as an intermediate in the production of methanol.
Carbon monoxide structure
Because it is only slightly less dense than air, it mixes readily without stratification. Because it is only slightly less dense than air, it mixes readily without stratification. Because of its low boiling point, carbon monoxide is shipped as a nonliquified compressed gas. It is also known as carbon oxide, flue gas, and monoxide. Carbon monoxide is a flammable gas and is incompatible or reactive with strong oxidizers, such as bromine trifluoride, chlorine trifluoride, and lithium.

Physikalische Eigenschaften

Colorless, odorless and tasteless gas; density 1.229 g/L; very flammable,burns in air with a bright blue flame; liquefies at -191.5°C; solidifies at -205°C; critical temperature -140°C, critical pressure 34.53 atm, critical vol ume 93 cm3/mol; soluble in chloroform, acetic acid, ethyl acetate, ethanol, and ammonium hydroxide; sparingly soluble in water (2.3 mL/100 mL water at 20°C).

Occurrence

Carbon monoxide is found in varying concentrations in unventilated and confined spaces resulting from partial oxidation of carbonaceous matter. Burning wood, paper, kerosene, or other organic materials in inadequate air can produce this gas. It also is found in automobile exhaust and tobacco smoke emissions.
Carbon monoxide has many important industrial applications. It is used in Fischer-Tropsch process to produce liquid or gaseous hydrocarbons, synthet ic fuels and many oxygenated derivatives. This process was applied before and during World War II to produce synthetic fuels. Probably the most important application of this compound involves production of oxygenated organics in the Synthol process and in oxo synthesis. Many aliphatic alcohols, alehydes and ketones are produced by catalytic hydrogenation of carbon monoxide. Oxo synthesis produces aldehydes from olefins. Carbon monoxide also is the start ing material for preparing metal carbonyls. In metallurgy, it is used as a reducing agent to reduce oxides. In the Mond process it recovers nickel.

History

Carbon monoxide is a colorless, odorless, tasteless, flammable, toxic gas. It was first identified by the Spanish alchemist Arnold of Villanova (1235–1313), who noted the production of a poisonous gas when wood was burned. The formal discovery of carbon monoxide is credited to the French chemist Joseph Marie Fran?ois de Lassone (1717–1788) and the British chemist Joseph Priestley (1733–1804). The former prepared carbon monoxide by heating carbon in the presence of zinc, and for a time the compound was incorrectly identified as hydrogen. William Cumberland Cruikshank (1745–1800) correctly determined that carbon monoxide was an oxide of carbon in 1800.

Verwenden

Carbon monoxide is used in the oxo processor Fischer–Tropsch process in the produc tion of synthetic fuel gas (producer gas, watergas, etc.); as a reducing agent in the Monodprocess for the recovery of nickel; in car bonylation reactions; and in the productionof metal carbonyls and complexes. It is pro duced by incomplete combustion of organicmaterials. Risk of exposure to this gas arisesunder fire conditions; from a burning stoveor from burning wood or candles in a closedroom; in the exhausts of internal combustion engines; in a closed garage with theautoengine on; and from oil or gas burners,improperly adjusted.

Definition

A colorless flammable toxic gas formed by the incomplete combustion of carbon. In the laboratory it can be made by dehydrating methanoic acid with concentrated sulfuric acid:
HCOOH – H2O → CO
Industrially, it is produced by the oxidation of carbon or of natural gas, or by the water-gas reaction. It is a powerful reducing agent and is used in metallurgy.
Carbon monoxide is neutral and only sparingly soluble in water. It is not the anhydride of methanoic acid, although under extreme conditions it can react with sodium hydroxide to form sodium methanoate. It forms metal carbonyls with transition metals, and its toxicity is due to its ability to form a complex with hemoglobin.

Vorbereitung Methode

Carbon monoxide is formed during combustion of carbonaceous materials in oxygen (when carbon is in excess), or it can be formed (with oxygen) by thermal decomposition of carbon dioxide (>2000° °C). It can be generated by improperly vented cooking and heating appliances including coal stoves, furnaces, and gas appliances when the oxygen supply is insufficient. Other sources include exhaust of internal combustion engines, structural fires, and tobacco products. Carbon monoxide can also be formed endogenously by normal heme turnover or during the metabolism of selected hydrocarbons, such as methylene chloride. Not surprisingly, CO is one of the most common agents of inadvertent human intoxication in both occupational and nonoccupational environments.

Allgemeine Beschreibung

A colorless cryogenic liquid. Prolonged exposure to carbon monoxide rich atmospheres may be fatal. Contact with the liquid can cause severe frostbite. Less dense than air. Easily ignited and a flame can flash back to the source of a leak very easily. Burns with a violet flame. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket. CARBON MONOXIDE is used in organic synthesis, metallurgy, and a fuel.

Air & Water Reaktionen

Highly flammable.

Reaktivität anzeigen

Contact of very cold liquefied gas with water may result in vigorous or violent boiling and extremely rapid vaporization. If the water is hot, a liquid "superheat" explosion may occur. Pressures may build to dangerous levels if the liquid contacts water in a closed container [Handling Chemicals Safely 1980]. Reacts explosively with bromine trifluoride at high temperatures or concentrations [Mellor 2, Supp. 1:166 1956]. The same is true for various oxidizers such as: chlorine dioxide, oxygen (liquid), peroxodisulfuryl difluoride. Reacts with lithium to give lithium carbonyl, which detonates violently with water, igniting the gaseous products [Mellor 2, Supp 2:84 1961]. Potassium and sodium metals behave similarly. Cesium oxide, iron(III) oxide, and silver oxide all react, in the presence of moisture, at ambient temperatures with carbon monoxide causing ignition, [Mellor, 1941, vol. 2, 487].

Hazard

Highly flammable, dangerous fire and explosion risk. Flammable limits in air 12–75% by volume. Toxic by inhalation. Note: Carbon monox- ide has an affinity for blood hemoglobin over 200 times that of oxygen. A major air pollutant.

Brandgefahr

EXTREMELY FLAMMABLE. May be ignited by heat, sparks or flames. Flame may be invisible. Containers may explode when heated. Vapor explosion and poison hazard indoors, outdoors or in sewers. Vapors from liquefied gas are initially heavier than air and spread along ground. Vapors may travel to source of ignition and flash back. Runoff may create fire or explosion hazard.

Flammability and Explosibility

Carbon monoxide is a flammable gas. It forms explosive mixtures with air in the range of 12.5 to 74% by volume.

Industrielle Verwendung

Carbon monoxide (CO) is a product of incompletecombustion, and is very reactive. It is oneof the desirable products in synthesis gas formaking chemicals; the synthesis gas made fromcoal contains at least 37% CO. It is also recoveredfrom top-blown O2 furnaces in steel mills.It reacts with H2 to form methanol, which is then catalyzed by zeolites into gasoline. Aceticacid is made by methanol carbonylation, andacrylic acid results from the reaction of CO,acetylene, and methanol.

Materials Uses

Steel and other common metals are satisfactory for use with dry, sulfur-free carbon monoxide at pressures up to 2000 psig (13 790 kPa). Iron, nickel, and other metals can react with carbon monoxide at elevated pressures to form carbonyls in small quantities. The presence of moisture and sulfur-containing impurities in carbon monoxide appreciably increases its corrosive action on steel at any pressure. High-pressure plant equipment is often lined with copper for increased resistance to carbon monoxide attack. Very highly alloyed chrome steels are sufficiently resistant to corrosion by carbon monoxide containing small amounts of sulfur-bearing impurities. Users are strongly urged to make stress corrosion tests of samples of proposed construction materials in order to select one that will withstand the high-pressure use of carbon monoxide under actual conditions.

mögliche Exposition

Carbon monoxide is used in metallurgy as a reducing agent, particularly in the Mond process for nickel; in organic synthesis, especially in the FischerTropsch process for petroleum products, and in the oxo reaction; and in the manufacture of metal carbonyls. It is usually encountered in industry as a waste product of incomplete combustion of carbonaceous material (complete combustion produces CO2). The major source of CO emission in the atmosphere is the gasoline-powered internal combustion engine. Special industrial processes which contribute significantly to CO emission are iron foundries, particularly the cupola; fluid catalytic crackers; fluid coking; and moving-bed catalytic crackers in thermal operations in carbon black plants; beehive coke ovens; basic oxygen furnaces, sintering of blast furnace feed in steel mills; and formaldehyde manufacture. There are numerous other operations in which a flame touches a surface that is cooler than the ignition temperature of the gaseous part of the flame where exposure to CO may occur,e.g., arc welding, automobile repair; traffic control; tunnel construction; firefighting; mines, use of explosives, etc.

Environmental Fate

CO has varied effects on multiple enzymatic reactions and processes. Most easily seen and measured via co-oximetry is its high affinity and binding to Hb. This results in an overall lack of oxygen carrying capacity along with a shift of the oxygen dissociation curve to the left so that even available oxyhemoglobin is less able to offload oxygen to tissue sites. This,coupled with CO’s ability to bind to and arrest cellular metabolism, results in global hypoxemia. The overall lack of tissue perfusion and energy production results in metabolic lactic acidosis.
CO also has the ability to bind to other globins, most importantly myoglobin. Significant myoglobin binding results in lack of tissue oxygenation to heart and myocardial damage.
The final high-risk organ system affected after CO exposure is the central nervous system. CO has the ability to cause delayed neuropsychiatric sequelae in addition to the acute effects seen as a result of hypoxemia. This is thought to be due to delayed lipid peroxidation achieved through the displacement of nitric oxide. A reperfusion-like injury occurs in these cases.

Lager

cylinders of carbon monoxide should be stored and used in a continuously ventilated gas cabinet or fume hood. Local fire codes should be reviewed for limitations on quantity and storage requirements.

Versand/Shipping

UN1016 Carbon monoxide, compressed, Hazard class: 2.3; Labels: 2.3-Poisonous gas; 2.1- Flammable gas, Inhalation Hazard Zone D. NA9202 Carbon monoxide, refrigerated liquid (cryogenic liquid), Hazard class: 2.3; Labels: 2.3-Poisonous gas; 2.1- Flammable gas, Domestic (United States), Inhalation Hazard Zone D. Cylinders must be transported in a secureupright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner.

läuterung methode

Iron carbonyl is a likely impurity in CO stored under pressure in steel tanks. It can be decomposed by passing the gas through a hot porcelain tube at 350-400o. Passage through alkaline pyrogallol solution removes oxygen (and CO2). Removal of CO2 and water are effected by passage through soda-lime followed by Mg(ClO4)2 or P2O5 and collected over Hg. Carbon monoxide can be condensed and distilled at -195o. It is sparingly soluble in H2O but is readily absorbed by a solution of CuCl in HCl to give the white crystalline adduct CuCl.CO.2H2O. It burns in air with a bright blue flame but a mixture of 2volumes of CO and 1volume of O2 explode when kindled, although in a small jar the combustion is not violent. HIGHLY POISONOUS gas as it reacts with haemoglobin to form bright red carboxyhaemoglobin which is stable and not readily decomposed by oxygen. [Gilliland & Blanchard Inorg Synth II 81 1946, Glemser in Handbook of Preparative Inorganic Chemistry (Ed. Brauer) Academic Press Vol I p 645-646 1963.]

Inkompatibilitäten

Forms extremely explosive mixture with air. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. In the presence of finely dispersed metal powders the substance forms toxic and flammable carbonyls. May react vigorously with oxygen, acetylene, chlorine, fluorine, nitrous oxide.

Waste disposal

Return refillable compressed gas cylinders to supplier. Dissolve or mix the material with a combustible solvent and burn in a chemical incinerator equipped with an afterburner and scrubber. All federal, state, and local environmental regulations must be observed. Carbon monoxide can also be recovered from gas mixtures as an alternative to disposal.

Vorsichtsmaßnahmen

Carbon monoxide poisoning, prevention, occupational safety Install a CO alarm on each level of your home. Home heating systems, chimneys, and fl ues must be inspected and cleaned by a qualifi ed technician every year. Keep chimneys clear of bird and squirrel nests, leaves, and residue to ensure proper ventilation. Make sure that the furnace and other appliances, such as gas ovens, ranges, and cooktops are inspected for adequate ventilation. Do not burn charcoal inside the house even in the fi replace. Do not operate gasoline-powered engines in confi ned areas, such as garages or basements. Do not leave your car, mower, or other vehicle running in an attached garage, even with the door open. Do not block or seal shut exhaust fl ues or ducts for appliances such as water heaters, ranges, and clothes dryers.

Kohlenmonoxid Upstream-Materialien And Downstream Produkte

Upstream-Materialien

Downstream Produkte


Kohlenmonoxid Anbieter Lieferant Produzent Hersteller Vertrieb Händler.

Global( 77)Lieferanten
Firmenname Telefon E-Mail Land Produktkatalog Edge Rate
Henan Tianfu Chemical Co.,Ltd.
+86-0371-55170693 +86-19937530512
info@tianfuchem.com China 21703 55
Hubei Jusheng Technology Co.,Ltd.
18871490254
linda@hubeijusheng.com CHINA 28180 58
Hubei xin bonus chemical co. LTD
86-13657291602
linda@hubeijusheng.com CHINA 22968 58
SIMAGCHEM CORP
+86-13806087780
sale@simagchem.com China 17368 58
Hefei TNJ Chemical Industry Co.,Ltd.
0551-65418671
sales@tnjchem.com China 34572 58
Shaanxi Dideu Medichem Co. Ltd
+86-029-89586680 +86-18192503167
1026@dideu.com China 9802 58
Yurui (Shanghai) Chemical Co., Ltd.
+86-021-50456736 +8615000292053
sales209@riyngroup.com China 942 58
Mainchem Co., Ltd. +86-0592-6210733
sale@mainchem.com China 32360 55
Chemwill Asia Co.,Ltd. 86-21-51086038
chemwill_asia@126.com CHINA 23931 58
Central China Special Gas (CCSG) Co., Ltd 0734-8755555 15674722888
lyq@ccsg.cn China 281 58

630-08-0(Kohlenmonoxid)Verwandte Suche:


  • CARBON MONOXIDE
  • CARBON MONOXIDE, 99.0+%
  • CARBON MONOXIDE-16O (GAS) (18O-DEPLETED), 99.93 ATOM% 16O
  • CARBON-12C MONOXIDE, 99.95 ATOM % 12C
  • Carbon monoxyde
  • Carbon monoxide (MAC 20 @2000m 15 @>3000m)
  • Carbon oxide (CO)
  • carbone(oxydede)
  • carbone(oxydede)(french)
  • Carbonic oxide
  • Exhaust Gas
  • exhaustgas
  • Flue gasnide
  • fluegas
  • Kohlenoxid
  • Kohlenoxyd
  • Koolmonoxyde
  • NA 9202
  • Oxyde de carbone
  • oxydedecarbone
  • oxydedecarbone(french)
  • spentgas
  • tailgas
  • Wegla tlenek
  • weglatlenek
  • weglatlenek(polish)
  • carbonicoxide
  • Carbonio
  • carbonio(ossidodi)
  • Carbonmonooxide
  • carbonmonoxide(dot)
  • carbonmonoxide,cyl.with10l(net~3kg)
  • carbonmonoxide,refrigeratedliquid(cryogenicliquid)
  • carbonoxide(co)
  • CARBON MONOXIDE 99.95% CHEMICALLY PURE
  • CARBON MONOXIDE ISO 9001:2015 REACH
  • TIANFU-CHEM CARBON MONOXIDE
  • Carbon monooxide
  • Carbon oxide
  • Carbone
  • Flue gas
  • Kohlenmonoxid
  • Kohlenstoffmonoxid
  • CO
  • carbon monoxide gas
  • 630-08-0
  • 630080
  • Alphabetical Listings
  • Compressed and Liquefied Gases
  • Stable Isotopes
  • Synthetic Reagents
  • BioChemical
  • Chemical Synthesis
  • Compressed and Liquefied Gases
  • Synthetic Reagents
  • Inorganics
Copyright 2019 © ChemicalBook. All rights reserved