Chinese english Germany Korea


2'-クロロ-4,4'-ジフルオロカルコン 化学構造式
CH4;Biogas;Methan;carbane;Methane;firedamp;Fire damp;Marsh gas;methanegas;NATURAL GAS
MOL File:

2'-クロロ-4,4'-ジフルオロカルコン 物理性質

融点 :
−183 °C(lit.)
沸点 :
−161 °C(lit.)
比重(密度) :
0.716 g/mL at 25 °C(lit.)
0.55 (vs air)
屈折率 :
闪点 :
-188 ºC
外見 :
48(at 25℃)
爆発限界(explosive limit):
Merck :
Stable. Extremely flammable - note low flash point; mixtures with air constitute an explosion hazard. Reacts violently with interhalogens. Incompatible with strong oxidizing agents, halogens, interhalogens, oxygen.
CAS データベース:
74-82-8(CAS DataBase Reference)
  • リスクと安全性に関する声明
  • 危険有害性情報のコード(GHS)
主な危険性  F+
Rフレーズ  12
Sフレーズ  9-16-33
RIDADR  UN 1971 2.1
WGK Germany  -
RTECS 番号 PA1490000
自然発火温度 998 °F
国連危険物分類  2.1
化審法 一般化学物質
注意喚起語 Danger
コード 危険有害性情報 危険有害性クラス 区分 注意喚起語 シンボル P コード
H220 極めて可燃性/引火性の高いガス 可燃性/引火性ガス 1 危険 P210, P377, P381, P403
H280 加圧ガス;熱すると爆発のおそれ 高圧ガス 高圧ガス
警告 P410+P403
P210 熱/火花/裸火/高温のもののような着火源から遠ざ けること。-禁煙。
P377 漏洩ガス火災の場合:漏えいが安全に停止されな い限り消火しないこと。
P381 安全に対処できるならば着火源を除去すること。
P410+P403 日光から遮断し、換気の良い場所で保管するこ と。

2'-クロロ-4,4'-ジフルオロカルコン 価格

メーカー 製品番号 製品説明 CAS番号 包装 価格 更新時間 購入

2'-クロロ-4,4'-ジフルオロカルコン 化学特性,用途語,生産方法




Methane is a colorless, odorless, flammable hydrocarbon gas that is the simplest alkane. The root word, met, in methane is derived from the Greek root word methe meaning wine. Methylene was used in the early 19th century as the name for methanol, which is wood alcohol, CH3OH. Methylene comes from methe + hydē, the latter being the Greek word for wood, so methylene would mean wine from wood. Methanol got the names methylene and wood alcohol because it was discovered by Robert Boyle (1627–1691) in the 17th century by the destruction distillation of wood. Destructive distillation involves heating in the absence of air. Methane is the first alkane and carries the suffix“ane” denoting an alkane, thus methe z + ane = methane. The carbon is at the center of the tetrahedron, which can be assumed to be an equilateral pyramid, with a hydrogen atom at each of the four corners of the tetrahedron.
Methane is the principal component of natural gas, with most sources containing at least 75% methane. Methane production occurs naturally through a process called methanogenesis. Methanogenesis involves anaerobic respiration by single-cell microbes collectively called methanogens.


colourless odourless gas


Methane is a natural, colorless, odorless, and tasteless gas. It is used primarily as fuel to make heat and light. It is also used to manufacture organic chemicals. Methane can be formed by the decay of natural materials and is common in landfi lls, marshes, septic systems, and sewers. It is soluble in alcohol, ether, benzene, and organic solvents. Methane is incompatible with halogens, oxidizing materials, and combustible materials. Methane evaporates quickly. Methane gas is present in coal mines, marsh gas, and in sludge degradations. Methane can also be found in coal gas. Pockets of methane exist naturally underground. In homes, methane may be used to fuel a water heater, stove, and clothes dryer. Incomplete combustion of gas also produces carbon monoxide. Methane gas is flammable and may cause fl ash fi re. Methane forms an explosive mixture in air at levels as low as 5%. Electrostatic charges may be generated by fl ow and agitation.


Methane is an odorless, colorless gas.


Methane has been used as a fossilfuel for thousands of years. The discovery of methane is attributed to the Italian physicist Alessandro Volta (1745–1827). Volta, known primarily for his discoveries in electricity, investigated reports of a flammable gas found in marshes. In November 1776, Volta, while visiting the Lake Maggiore region of northern Italy, noticed that gas bubbles emanated from disturbed sediments in marshes. Volta collected the gas and began investigations on its nature. He discovered that the gas was highly flammable when mixed with air. He developed an instrument termed Volta’s pistol (also called a spark eudiometer) that fired metal balls like a miniature cannon to conduct combustion experiments with methane. He also developed a lamp fueled by methane.


Methane is an important starting material for numerous other chemicals. The most important of these are ammonia, methanol, acetylene, synthesis gas, formaldehyde, chlorinated methanes, and chlorofl uorocarbons. Methane is used in the petrochemical industry to produce synthesis gas or syn gas, which is then used as a feedstock in other reactions. Synthesis gas is a mixture of hydrogen and carbon monoxide. It is produced through steam-methane reforming by reacting methane with steam at approximately 900 C in the presence of a metal catalyst: CH4 + H2O→CO + 3H2. Alternately, methane is partially oxidized and the energy from its partial combustion is used to produce syn gas:
CH4 + 2O2→ CO2 + 2H2O
CH4 + CO2→2CO + 2H2
CH4 + H2O→CO + 3H
Hydrogen from syn gas reacts with nitrogen to produce ammonia: N2 + 3H2→2NH3. Carbon monoxide and hydrogen from syn gas can be combined to produce methanol: CO + 2H2→CH3OH.
Methanol is primarily used for the production of formaldehyde through an oxidation process: 2CH3OH + O2→CH2O + H2O or an oxidation-dehydrogenation process: CH3OH CH2O + H2.
Chlorination of methane, in which chlorine is substituted for one to all four of the hydrogens in methane, produces methyl chloride (CH3Cl), methylene chloride (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4). The substitution of chlorines and fluorines in methane results in chlorofl uorocarbons. Methane is a fossil fuel that acts as a greenhouse gas, making it a subject of widespread interest in global warming research.


Methane is widely distributed in nature. As adeep earth gas, it is outgassing from earth’scrust. It is also present in the atmosphere(0.00022% by volume). It is the prime constituentof natural gas (85–95% concentration).It is formed from petroleum crackingand decay of animal and plant remains. It isfound in marshy pools and muds. Methaneis used as a common heating fuel in naturalgas; in the production of hydrogen, acetylene,ammonia, and formaldehyde; and as acarrier gas in GC analysis.


Methane is used primarily as a fuel to make heat and light. It is also used to manufacture organic chemicals. Methane can be formed by the decay of natural materials and is common in landfills, marshes, septic systems, and sewers. It is soluble in alcohol, ether, benzene, and organic solvents. Methane is incompatible with halogens, oxidising materials, and combustible materials. Methane evaporates quickly. Methane gas is present in coal mines, marsh gas, and sludge degradations. Methane can also be found in coal gas. Pockets of methane exist naturally underground. In homes, methane may be used to fuel a water heater, stove, and clothes dryer. Also, incomplete combustion of gas also produces carbon monoxide. Methane gas is flammable and may cause flash fire. Methane forms an explosive mixture in air at levels as low as 5%. Electrostatic charges may be generated by flow and agitation.


The first member of the paraffin (alkane) hydrocarbon series.


A gaseous alkane. Natural gas is about 99% methane and this provides an important starting material for the organic-chemicals industry. Methane can be chlorinated directly to produce the more reactive chloromethanes, or it can be ‘reformed’ by partial oxidation or using steam to give mixtures of carbon oxides and hydrogen. Methane is the first member of the homologous series of alkanes.


methane: A colourless odourless gas, CH4; m.p.–182.5°C; b.p.–164°C.Methane is the simplest hydrocarbon,being the first member of thealkane series. It is the main constituentof natural gas (~99%) and as such is an important raw material forproducing other organic compounds.It can be converted into methanol by catalytic oxidation.


natural gas: A naturally occurringmixture of gaseous hydrocarbonsthat is found in porous sedimentaryrocks in the earth’s crust, usually inassociation with petroleum deposits.It consists chiefly of methane(about 85%), ethane (up to about10%), propane (about 3%), and butane.Carbon dioxide, nitrogen, oxygen,hydrogen sulphide, and sometimeshelium may also be present. Naturalgas, like petroleum, originates in thedecomposition of organic matter. It iswidely used as a fuel and also to producecarbon black and some organicchemicals. Natural gas occurs onevery continent, the major reservesoccurring in the USA, Russia, Kazakhstan,Turkmenistan, Ukraine, Algeria,Canada, and the Middle East. Seealso liquefied petroleum gas.


METHANE is a colorless odorless gas. METHANE is also known as marsh gas or methyl hydride. METHANE is easily ignited. The vapors are lighter than air. Under prolonged exposure to fire or intense heat the containers may rupture violently and rocket. METHANE is used in making other chemicals and as a constituent of the fuel, natural gas.


Highly flammable.


METHANE is a reducing agent, METHANE is involved in many explosions when combined with especially powerful oxidizers such as bromine pentafluoride, chlorine trifluoride, chlorine, iodine, heptafluoride, dioxygenyl tetrafluoroborate, dioxygen difluoride, trioxygen difluoride and liquid oxygen. Other violent reactions include, chlorine dioxide and nitrogen trifluoride. Liquid oxygen gives an explosive mixture when combined with liquid METHANE [NFPA 1991]. Contact of very cold liquefied gas with water may result in vigorous or violent boiling of the product and extremely rapid vaporization due to the large temperature differences involved. If the water is hot, there is the possibility that a liquid "superheat" explosion may occur. Pressures may build to dangerous levels if liquid gas contacts water in a closed container [Handling Chemicals Safely 1980].


Severe fire and explosion hazard, forms explosive mixture with air (5–15% by volume). An asphyxiant gas.


Methane is a nonpoisonous gas. It is anasphyxiate. Thus exposure to its atmospherecan cause suffocation.


High concentrations may cause asphyxiation. No systemic effects, even at 5% concentration in air.


Methane is a relatively potent gas. It is the simplest alkane and the principal component of natural gas. Exposures to methane gas cause toxicity and adverse health effects. The signs and symptoms of toxicity include, but are not limited to, nausea, vomiting, diffi culty breathing, irregular heart beat, headache, drowsiness, fatigue, dizziness, disorientation, mood swings, tingling sensation, loss of coordination, suffocation, convulsions, unconsciousness, and coma. While at low concentrations methane causes no toxicity, high doses lead to asphyxiation in animals and humans. Displacement of air by methane gas is known to cause shortness of breath, unconsciousness, and death from hypoxemia. Methane gas does not pass readily through intact skin. However, in its extremely cold liquefi ed form, methane can cause burns to the skin and eyes. No long-term health effects are currently associated with exposure to methane.


Special Hazards of Combustion Products: None


Biogas, a gaseous fuel, is produced by the fermentation of organic matter by methane-forming bacteria (methanogens). Biogas consists of a mixture of methane, carbon dioxide and hydrogen.
A mixture of methane and carbon dioxide, or even methane alone, formed in the deep layers of organic material in swamp bottoms or landfills, is sometimes called swamp gas or marsh gas.
Acetoclastic bacteria form methane exclusively from acetic acid in anaerobic digestion. They grow slowly and have a doubling time of several days, which is the rate-limiting step in biogas production. Bacteria that ferment fatty acids (mainly propionic acid and butyric acid) to acetic acid are called acetogenic bacteria.
Animal dung and plant residues are used to produce biogas in a fermenter. The residual biogas slurry containing 1.4 to 1.8 % nitrogen, 1.1 to 1.7 % phosphorus (as P2O5)an d 0.8 to 1.3 % potassium (as K2O) is used as organic manure. Animal manure used for biogas production does not lose its fertilizer nutrient value. Biogas is usually made by the decomposition of domestic, industrial and agricultural sewage wastes. Methane, its major component, can be harvested and used as a pollution-free renewable resource and a derived source of domestic energy. Biogas, produced in special biogas digesters, is widely used in China and India.


Methane (CH4) is a colorless gas produced from a highly reduced paddy field. This odorless gas is also produced by decomposing organic matter in sewage and marshes. It is the chief constituent of natural gas. It occurs in coal gas and water gas and is produced in petroleum refining.
There is now enough evidence to suggest that rice cultivation results in increased methane emission to the atmosphere. The reasons for interest in methane are that it is an important energy source, which has a global warming potential of about 24.5% (carbon dioxide being loo%), and is responsible for approximately 25% of the anticipated warming.
Atmospheric methane originates mainly from biogenic sources, such as rice paddies and natural wetlands. Rice paddies account for 15 to 20% of the world's total anthropogenic methane emission. In addition to the role of rice plant in methane emission, it also plays a significant role in methane oxidation because oxygen transported below the ground by plants, leaks out of the rhizosphere into the sediments, stimulating the methane oxidizing activity. Most of the methane emitted from rice fields is expected to be from the Asian region as it has 90% of the total world rice harvested area. Several investigations have demonstrated that methane flux in rice fields is dependent on the variety of rice [dryland, imgated or deep ponded water], water level, fertilizer application and crop phenology
Strategies to mitigate methane emission from paddy soils of the world have been identified, which include (a) a form and dose of nitrogen and other chemical fertilizers, (b) the mode of fertilizer application, (c) water management, and (d) cultivation practices. Recent studies have indicated that methane emission decreased by about 50% after the application of an ammonium based fertilizer, due to oxidation of methane. The various options to mitigate methane emission are (a) direct seediig of paddy crop, (b) intermittent irrigation, (c) soil amendment with sulphate containing fertilizers, and (d) compost addition in place of fresh organic matter.


Natural gas is the feedstock for 78% of the world's ammonia produced. It is a naturally occurring mixture of gaseous hydrocarbons found in porous sedimentary rocks in the earth's crust, usually in association with petroleum deposits. It is a colorless, odorless, flammable gas or liquid.
Natural gas contains methane (about 85%), hydrogen sulphide and carbon dioxide in varying percentages, and a small percentage of ethane and higher hydrocarbons.


A simple asphyxiant. Very dangerous fire and explosion hazard when exposed to heat or flame. Reacts violently with powerful oxidzers (e.g., bromine pentafluoride, chlorine trifluoride, chlorine, fluorine, iodine heptafluoride, dioxygenyl tetrafluoroborate, dioxygen difluoride, trioxygen difluoride, liquid oxygen, ClO2, NF3,OF2). Incompatible with halogens or interhalogens in air (forms explosive mixtures). Explosive in the form of vapor when exposed to heat or flame. To fight fire, stop flow of gas. See also ARGON for a description of asphyxiants.


Methane is used as a fuel and in the manufacture of organic chemicals, acetylene, hydrogen cyanide, and hydrogen. It may also be a cold liquid. Natural gas is used principally as a heating fuel. It is transported as a liquid under pressure. It is also used in the manufacture of various chemicals including acetaldehyde, acetylene, ammonia, carbon black; ethyl alcohol; formaldehyde, hydrocarbon fuels; hydrogenated oils; methyl alcohol; nitric acid; synthesis gas; and vinyl chloride. Helium can be extracted from certain types of natural gas.


If this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit. If frostbite has occurred, seek medical attention immediately; do NOT rub the affected areas or flush them with water. In order to prevent further tissue damage, do NOT attempt to remove frozen clothing from frostbitten areas. If frostbite has NOT occurred, immediately and thoroughly wash contaminated skin with soap and water


Occupational workers should store methane gas containers away from incompatible substances and handle in accordance with standard set regulations and grounding and bonding if required


Occupational workers should store methane gas containers away from incompatible substances and handle in accordance with standard set regulations and grounding and bonding if required.


UN1971 Methane, compressed or Natural gas, compressed (with high methane content), Hazard Class: 2.1; Labels: 2.1-Flammable gas. UN1972 Methane, refrigerated liquid (cryogenic liquid) or Natural gas, refrigerated liquid (cryogenic liquid), with high methane content), Hazard Class: 2.1; Labels: 2.1-Flammable gas. Cylinders must be transported in a secure upright position, in a wellventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner


Dry methane by passing over CaCl2 and P2O5, then through a Dry-ice trap and fractionally distil it from a liquid-nitrogen trap. Oxygen can be removed by prior passage in a stream of hydrogen over reduced copper oxide at 500o, and higher hydrocarbons can be removed by chlorinating about 10% of the sample: the hydrocarbons, chlorides and HCl are readily separated from the methane by condensing the sample in the liquid-nitrogen trap and fractionally distilling it. Methane has also been washed with conc H2SO4, then solid NaOH and then 30% NaOH solution. It is dried with CaCl2, then P2O5, and condensed in a trap at liquid air temperature, then transferred to another trap cooled in liquid nitrogen. CO2, O2, N2 and higher hydrocarbons can be removed from methane by adsorption on charcoal. [Eiseman & Potter J Res Nat Bur Stand 58 213 1957, Beilstein 1 IV 3.] HIGHLY FLAMMABLE.


May form explosive mixture with air. A strong reducing agent. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Reacts violently with bromine pentafluoride, chlorine dioxide, nitrogen trifluoride, oxygen difluoride and liquid oxygen. In general, avoid contact with all oxidizers


Return refillable compressed gas cylinders to supplier. Incineration (flaring)


Occupational workers should be careful during handling and management of methane gas because of its severe fi re and explosion hazard, particularly with pressurized containers. The containers may rupture or explode if exposed to suffi cient heat. Workers should avoid heat, flames, sparks, and other sources of ignition, and stop any leak if possible without personal risk. Workers should wear appropriate chemical-resistant gloves. Also, vapors should be reduced with water spray and keep unnecessary workers/people away from the place of chemical hazard. The closed spaces should be well ventilated before the workers enter. Methane is not toxic; however, it is highly flammable and may form explosive mixtures with air. Methane is violently reactive with oxidizers, halogens, and some halogen-containing compounds. Methane is also an asphyxiant and in enclosed areas displaces oxygen. Septic tanks, cesspools, and drywells present serious hazards, including septic cave-in or collapse, methane gas explosion hazards, and asphyxiation hazards. Occupational workers/work area supervisor should note the indications of methane gas poisoning: Soon after exposure to oxygen levels of less than 15% in air, if the workers feel symptoms of dizziness, headache, and tiredness, medical advice should be provided.

2'-クロロ-4,4'-ジフルオロカルコン 上流と下流の製品情報



2'-クロロ-4,4'-ジフルオロカルコン 生産企業

Global( 44)Suppliers
名前 電話番号 ファックス番号 電子メール 国籍 製品カタログ 優位度
Henan DaKen Chemical CO.,LTD.
+86-371-55531817 CHINA 22084 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 20763 55
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32607 55
Energy Chemical 021-58432009 / 400-005-6266
021-58436166-800 China 44169 61
Shanghai Hanhong Scientific Co.,Ltd. 021-54306202,021-54308259
+86-21-54291107 China 43373 64
Wuxi Zhongkun Biochemical Technology Co., Ltd. 051085629785,051085625359,QQ974229108,QQ1373125882
051085625359 China 19291 58
Hubei Jusheng Technology Co.,Ltd North:027-59599241,18871490274,QQ:1400878000 South:027-59599240,18871490354,QQ:1400868000
FAX:027-59599240 China 9907 58
Chizhou Kailong Import and Export Trade Co., Ltd. Please Email
- China 9656 50
Sigma-Aldrich 021-61415566 800-819-3336(Tel) 400-620-3333(Mobile)
021-61415567 China 28795 80
Shanghai wechem chemical co., ltd 021-5198 7501
021-6192 7501 China 286 58


  • 74-82-8
  • Biogas
  • carbane
  • CH4
  • Fire damp
  • firedamp
  • Methan
  • methane,compressed
  • methane,refrigeratedliquid(cryogenicliquid)
  • methanegas
  • Methyl hydride
  • methylhydride
  • r50(refrigerant)
  • Methane-12C, 13C-depleted
  • Methane Messer(R) CANGas, 99.999%
  • Marsh gas
  • METHANE-12C, 13C-DEPLETED, 99.9 ATOM % 12C
  • METHANE, 99.0+%
  • METHANE, 99.99%
  • Methane,99.995%
  • methane, refrigerated liquid
  • 2'-Chloro-4,4'-difluorochalcone
  • Methane
  • Methane, 99.97%
  • 沼気
  • 2'-クロロ-4,4'-ジフルオロカルコン
  • メタン
Copyright 2017 © ChemicalBook. All rights reserved