ChemicalBook
Chinese English Japanese Germany Korea

아세나프틸렌

아세나프틸렌
아세나프틸렌 구조식 이미지
카스 번호:
208-96-8
한글명:
아세나프틸렌
동의어(한글):
아세나프틸렌
상품명:
ACENAPHTHYLENE
동의어(영문):
ACENAPHTHYLENE;ACENAPHTHALENE;ACENAPHTHYLENE 95%;ACENAPHTHYLENE 80+%;ACENAPHTHYLENE, 99+%;Acenaphthylene Standard;acenaphthylene solution;Cyclopenta[de]naphthalene;cyclopenta(de)naphthalene;acenaphthylene,industrial
CBNumber:
CB1665589
분자식:
C12H8
포뮬러 무게:
152.19
MOL 파일:
208-96-8.mol

아세나프틸렌 속성

녹는점
78-82 °C(lit.)
끓는 점
280 °C(lit.)
밀도
0.899 g/mL at 25 °C(lit.)
증기압
6.68 at 25 °C (gas saturation-HPLC/UV spectrophotometry, Sonnefeld et al., 1983)
굴절률
1.6360 (estimate)
인화점
122°C
저장 조건
APPROX 4°C
용해도
Soluble in ethanol, ether, and benzene (U.S. EPA, 1985)
물리적 상태
neat
Specific Gravity
0.899
BRN
774092
Henry's Law Constant
1.14 at 25 °C (gas stripping-UV spectrophotometry, Warner et al., 1987)
안정성
Stable. Incompatible with oxidizing agents.
InChIKey
HXGDTGSAIMULJN-UHFFFAOYSA-N
CAS 데이터베이스
208-96-8(CAS DataBase Reference)
안전
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xn,N,F,T,Xi
위험 카페고리 넘버 22-36/37/38-67-65-50/53-38-11-39/23/24/25-23/24/25-20
안전지침서 26-36/37/39-62-61-60-45-36/37-16-7-37/39-33-25-9
유엔번호(UN No.) UN 1145 3/PG 2
WGK 독일 3
RTECS 번호 AB1254000
TSCA Yes
HS 번호 29029090
독성 LC50 (21-d) for Folsomia fimetaria 145 mg/kg (Sverdrup et al., 2002).
그림문자(GHS):
신호 어: Warning
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H301 삼키면 유독함 급성 독성 물질 - 경구 구분 3 위험 P264, P270, P301+P310, P321, P330,P405, P501
H302 삼키면 유해함 급성 독성 물질 - 경구 구분 4 경고 P264, P270, P301+P312, P330, P501
H315 피부에 자극을 일으킴 피부부식성 또는 자극성물질 구분 2 경고 P264, P280, P302+P352, P321,P332+P313, P362
H319 눈에 심한 자극을 일으킴 심한 눈 손상 또는 자극성 물질 구분 2A 경고 P264, P280, P305+P351+P338,P337+P313P
H335 호흡 자극성을 일으킬 수 있음 특정 표적장기 독성 - 1회 노출;호흡기계 자극 구분 3 경고
H372 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킴 특정 표적장기 독성 - 반복 노출 구분 1 위험 P260, P264, P270, P314, P501
H373 장기간 또는 반복 노출되면 장기(또는, 영향을 받은 알려진 모든 장기를 명시)에 손상을 일으킬 수 있음 특정 표적장기 독성 - 반복 노출 구분 2 경고 P260, P314, P501
예방조치문구:
P260 분진·흄·가스·미스트·증기·...·스프레이를 흡입하지 마시오.
P264 취급 후에는 손을 철저히 씻으시오.
P264 취급 후에는 손을 철저히 씻으시오.
P270 이 제품을 사용할 때에는 먹거나, 마시거나 흡연하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P314 불편함을 느끼면 의학적인 조치·조언을 구하시오.
P321 (…) 처치를 하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P337+P313 눈에 대한 자극이 지속되면 의학적인 조치· 조언를 구하시오.
P405 밀봉하여 저장하시오.
P501 ...에 내용물 / 용기를 폐기 하시오.

아세나프틸렌 C화학적 특성, 용도, 생산

개요

Acenaphthylene is a PAH with three aromatic rings. It is an intermediate chemical for the manufacture of dyes, soaps, pigments, pharmaceuticals, insecticides, fungicides, herbicides, plant growth hormones, naphthalic acids, naphthalic anhydride (pigments), and acenaphthylene (resins) and is used to manufacture plastics. The largest emissions of PAHs result from incomplete combustion of organic materials during industrial processes and other human activities. These include (1) processing of coal, crude oil, and natural gas, including coking, coal conversion, and petroleum refining; (2) production of carbon blacks, creosote, coal tar, and bitumen; (3) aluminium, iron, and steel production in plants and foundries; (4) heating in power plants and residences and cooking; (5) combustion of refuse; (6) motor vehicle traffic; and (7) environmental tobacco smoke.

화학적 성질

Acenaphthylene is a polycyclic aromatic hydrocarbon (PAH) with three aromatic rings. It is used to manufacture plastics. Intermediate for dyes, soaps, pigments, pharmaceuticals, insec- ticide, fungicide, herbicide, and plant growth hormones. Intermediate for naphthalic acids, naphthalic anhydride (intermediate for pigments), and acenaphthylene (intermediate for res- ins). The largest emissions of PAH result from incomplete combustion of organic materials during industrial processes and other human activities. These include (a) processing of coal, crude oil, and natural gas, including coal; (b) coking, coal conversion, petroleum refi ning, and production of carbon blacks, creosote, coal-tar, and bitumen; (c) aluminium, iron, and steel production in plants and foundries; (d) heating in power plants and residences and cooking; (e) combustion of refuse; (f) motor vehicle traffi c; and (g) environmental tobacco smoke.

화학적 성질

Acenaphthylene is a flaky yellow crystalline powder or solid.

물리적 성질

Colorless to white prisms or crystalline plates from alcohol with an odor similar to coal tar or aromatic hydrocarbons.

용도

Polycyclic aromatic hydrocarbons as carcinogenic

정의

ChEBI: A ortho- and peri-fused tricyclic hydrocarbon that occurs in coal tar.

일반 설명

Colorless crystalline solid. Insoluble in water. Used in dye synthesis, insecticides, fungicides, and in the manufacture of plastics.

공기와 물의 반응

Insoluble in water.

반응 프로필

Vigorous reactions, sometimes amounting to explosions, can result from the contact between aromatic hydrocarbons, such as ACENAPHTHYLENE, and strong oxidizing agents. They can react exothermically with bases and with diazo compounds. Substitution at the benzene nucleus occurs by halogenation (acid catalyst), nitration, sulfonation, and the Friedel-Crafts reaction.

건강위험

Acenapht hylene is i rritat i ng to t he sk i n a nd mucous membra nes of rabbits. Subc h ron ic oral doses of acenaphthylene caused adverse effects to the kidneys, liver, blood, reproductive system, and lungs of experimental animals. Prolonged period of inhalation at low doses caused pulmonary effects like bronchitis, pneumonia, and desquamation of the bronchial and alveolar epithelium in rats.

건강위험

Carcinogenic properties of this compound inanimals or humans are not known. Toxicitydata are not available.

잠재적 노출

PAHs are compounds containing multiple benzene rings and are also called polynuclear aromatic hydrocarbons. Acenaphthylene is an aromatic hydrocarbon used in coal tar processing, as a dye intermediate; making insecticides, fungicides, plastics.

Source

Detected in groundwater at a former coal gasification plant in Seattle, WA at concentrations ranging from nondetect (method detection limit 5 μg/L) to 250 μg/L (ASTR, 1995). Based on laboratory analysis of 7 coal tar samples, acenaphthylene concentrations ranged from 260 to 18,000 ppm (EPRI, 1990). Lee et al. (1992a) equilibrated 8 coal tars with distilled water at 25 °C. The maximum concentration of acenaphthylene observed in the aqueous phase was 0.5 mg/L.
Acenaphthylene was detected in asphalt fumes at an average concentration of 6.93 ng/m3 (Wang et al., 2001).
Detected in a distilled water-soluble fraction of used motor oil at concentrations ranging from 4.5 to 4.6 μg/L (Chen et al., 1994).
Acenaphthylene was detected in a diesel-powered medium duty truck exhaust at an emission rate of 70.1 μg/km (Schauer et al., 1999). Acenaphthylene was also detected in soot generated from underventilated combustion of natural gas doped with toluene (3 mole %) (Tolocka and Miller, 1995).
Gas-phase tailpipe emission rates from gasoline-powered automobiles with and without catalytic converters were 37.0 and 2,180 μg/km, respectively (Schauer et al., 2002). Nine commercially available creosote samples contained acenaphthylene at concentrations ranging from 7 to 3,700 mg/kg (Kohler et al., 2000).
Schauer et al. (2001) measured organic compound emission rates for volatile organic compounds, gas-phase semi-volatile organic compounds, and particle-phase organic compounds from the residential (fireplace) combustion of pine, oak, and eucalyptus. The gas-phase emission rates of acenaphthylene were 18.6 mg/kg of pine burned, 10.8 mg/kg of oak burned, and 9.99 mg/kg of eucalyptus burned.

환경귀착

Biological. When acenaphthylene was statically incubated in the dark at 25 °C with yeast extract and settled domestic wastewater inoculum, significant biodegradation with rapid adaptation was observed. At concentrations of 5 and 10 mg/L, 100 and 94% biodegradation, respectively, were observed after 7 d (Tabak et al., 1981). A Beijerinckia sp. and a mutant strain were able to cooxidize acenaphthylene to the following metabolites: acenaphthenequinone and a compound tentatively identified as 1,2-dihydroxyacenaphthylene. When acenaphthylene was incubated with a mutant strain (Beijerinckia sp. strain B8/36) one metabolite formed which was tentatively identified as cis-1,2-acenaphthenediol (Schocken and Gibson, 1984). This compound also formed when acenaphthylene was deoxygenated by a recombinant strain of Pseudomonas aeruginosa PAO1(pRE695) (Selifonov et al., 1996).
Bossert and Bartha (1986) reported that acenaphthylene in a Nixon sandy loam soil (1 g/kg) completely disappeared in <4 months. They concluded volatilization was more important than biodegradation in the disappearance of acenaphthylene from soil.
Ozonation in water at 60 °C produced 1,8-naphthalene dialdehyde, 1,8- naphthalene anhydride, 1,2-epoxyacenaphthylene, 1-naphthoic acid, and 1,8-naphthaldehydic acid (Calvert and Pitts, 1966).

운송 방법

UN3143 Dye intermediates, solid, toxic, Hazard Class: 6.1; Labels: 6.1-Poisonous material, Hazard, Technical Name Required. UN3077 Environmentally hazardous substances, solid, n.o.s., Hazard class: 9; Labels: 9-Miscellaneous hazardous material, Technical Name Required.

Purification Methods

Dissolve acenaphthylene in warm redistilled MeOH, filter through a sintered glass funnel and cool to -78o to precipitate the material as yellow plates [Dainton et al. Trans Faraday Soc 56 1784 1960]. Alternatively it can be sublimed in vacuo. [Beilstein 5 H 625, 5 IV 2138.]

비 호환성

Keep away from ozone and strong oxidizing agents. Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides

폐기물 처리

Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Product residues and sorbent media may be packaged in epoxy-lined drums, then destroyed by incineration, permanganate oxidation or microwave plasma treatment. The United States Environmental Protection Agency has investigated chemical precipitation for wastewater treatment

아세나프틸렌 준비 용품 및 원자재

원자재

준비 용품


아세나프틸렌 공급 업체

글로벌( 167)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32447 55
ATK CHEMICAL COMPANY LIMITED
+86 21 5161 9050/ 5187 7795
+86 21 5161 9052/ 5187 7796 ivan@atkchemical.com CHINA 24191 60
AB PharmaTech,LLC
323-480-4688
323-480-4688 sales01@abpharmatechusa.com United States 989 55
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30002 58
Jinan Carbotang Biotech Co.,Ltd.
+86 15866703830
figo.gao@foxmail.com CHINA 748 58
Hubei Jusheng Technology Co.,Ltd.
86-18871470254
027-59599243 sales@jushengtech.com CHINA 28236 58
Hubei xin bonus chemical co. LTD
86-13657291602
027-59338440 sales@guangaobio.com CHINA 23049 58
Chongqing Chemdad Co., Ltd
+86-13650506873
sales@chemdad.com CHINA 35440 58
Alchem Pharmtech,Inc.
8485655694
sales@alchempharmtech.com United States 63729 58
J & K SCIENTIFIC LTD. 400-666-7788 +86-10-82848833
86-10-82849933 jkinfo@jkchemical.com;market6@jkchemical.com China 96815 76

아세나프틸렌 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved