Chinese English Japanese Germany Korea


루비듐 구조식 이미지
카스 번호:
37Rb;Rubidio;RUBIDIUM;Chebi:33322;rubidium atom;MUELLER HINTON;RUBIDIUM METAL;RUBIDIUM: 99.9%;Rubidium powder;RUBIDIUM STANDARD
포뮬러 무게:
MOL 파일:

루비듐 속성

38-39 °C(lit.)
끓는 점
686 °C(lit.)
1.53 g/mL at 25 °C(lit.)
물리적 상태
Specific Gravity
11.0 μΩ-cm, 20°C
soluble in acids and alcohol [HAW93]
moisture sensitive
CAS 데이터베이스
7440-17-7(CAS DataBase Reference)
  • 위험 및 안전 성명
  • 위험 및 사전주의 사항 (GHS)
위험품 표기 Xi,C,F
위험 카페고리 넘버 36/37/38-36/38-34-14/15
안전지침서 26-36/37/39-43-45-36
유엔번호(UN No.) UN 2031 8/PG 2
WGK 독일 3
RTECS 번호 VL8500000
위험 등급 8
포장분류 III
신호 어: Danger
유해·위험 문구:
암호 유해·위험 문구 위험 등급 범주 신호 어 그림 문자 P- 코드
H260 물과 접촉시 자연 발화성 인화성 가스를 발생시킴 물반응성 물질 및 혼합물 구분 1 위험 P223, P231+P232, P280, P335+ P334,P370+P378, P402+P404, P501
H314 피부에 심한 화상과 눈에 손상을 일으킴 피부부식성 또는 자극성물질 구분 1A, B, C 위험 P260,P264, P280, P301+P330+ P331,P303+P361+P353, P363, P304+P340,P310, P321, P305+ P351+P338, P405,P501
H318 눈에 심한 손상을 일으킴 심한 눈 손상 또는 자극성 물질 구분 1 위험 P280, P305+P351+P338, P310
P223 물과 접촉하지 마시오.
P280 보호장갑/보호의/보안경/안면보호구를 착용하시오.
P231+P232 불활성 기체 하에서 취급하고, 습기를 방지하시오.
P303+P361+P353 피부(또는 머리카락)에 묻으면 오염된 모든 의복은 벗거나 제거하시오 피부를 물로 씻으시오/샤워하시오.
P305+P351+P338 눈에 묻으면 몇 분간 물로 조심해서 씻으시오. 가능하면 콘택트렌즈를 제거하시오. 계속 씻으시오.
P370+P378 화재 시 불을 끄기 위해 (Section 5. 폭발, 화재시 대처방법의 적절한 소화제)을(를) 사용하시오.
P405 밀봉하여 저장하시오.
P422 적절한 물질을(를) 충진하여 보관하시오.

루비듐 C화학적 특성, 용도, 생산

화학적 성질

Soft, silvery-white solid. Easily oxidized in air.High heat capacity and heat transfer coefficient. Soluble in acids and alcohol.

물리적 성질

Rubidium is a silvery-white lightweight solid at room temperature, but it melts at just38.89°C (102°F), which is just over the human body’s normal temperature. Its boiling pointis 686°C, its density is 1.532 g/cm3, and it has an oxidation state of +1.


There are 30 isotopes of rubidium, ranging from Rb-75 to Rb-98. Rb-85 is theonly stable form of rubidium and constitutes 72.17% of all rubidium isotopes found inthe Earth’s crust. Rb-87 is radioactive (a half-life of 4.9×1010 years) and makes up about27.83% of the remainder of rubidium found in the Earth’s crust. All the other 28 isotopes make up a tiny fraction of all the rubidium found on Earth and are radioactive withvery short half-lives.

Origin of Name

Rubidium is named for the Latin word rubidus, meaning “reddish.


Rubidium does not exist in its elemental metallic form in nature. However, in compoundforms it is the 22nd most abundant element on Earth and, widespread over most land areasin mineral forms, is found in 310 ppm. Seawater contains only about 0.2 ppm of rubidium,which is a similar concentration to lithium. Rubidium is found in complex minerals and untilrecently was thought to be a rare metal. Rubidium is usually found combined with other Earthmetals in several ores. The lepidolite (an ore of potassium-lithium-aluminum, with traces ofrubidium) is treated with hydrochloric acid (HCl) at a high temperature, resulting in lithiumchloride that is removed, leaving a residue containing about 25% rubidium. Another processuses thermochemical reductions of lithium and cesium ores that contain small amounts ofrubidium chloride and then separate the metals by fractional distillation.


Rubidium is located between potassium and cesium in the first group in the periodic table.It is the second most electropositive alkali element and reacts vigorously and explosively in airor water. If placed on concrete on a sunny day, it would melt and then react violently withmoist air to release hydrogen with enough heat to burn the hydrogen. If a chunk of rubidiummetal is left on a table exposed to the air, it combusts spontaneously. Rubidium must be storedin oil, such as kerosene.


Rubidium was discovered in 1861 by Bunsen and Kirchhoff in the mineral lepidolite by use of the spectroscope. The element is much more abundant than was thought several years ago. It is now considered to be the 16th most abundant element in the Earth’s crust. Rubidium occurs in pollucite, carnallite, leucite, and zinnwaldite, which contains traces up to 1%, in the form of the oxide. It is found in lepidolite to the extent of about 1.5%, and is recovered commercially from this source. Potassium minerals, such as those found at Searles Lake, California, and potassium chloride recovered from brines in Michigan also contain the element and are commercial sources. It is also found along with cesium in the extensive deposits of pollucite at Bernic Lake, Manitoba. Rubidium can be liquid at room temperature. It is a soft, silvery-white metallic element of the alkali group and is the second most electropositive and alkaline element. It ignites spontaneously in air and reacts violently in water, setting fire to the liberated hydrogen. As with other alkali metals, it forms amalgams with mercury and it alloys with gold, cesium, sodium, and potassium. It colors a flame yellowish violet. Rubidium metal can be prepared by reducing rubidium chloride with calcium, and by a number of other methods. It must be kept under a dry mineral oil or in a vacuum or inert atmosphere. Thirty-five isotopes and isomers of rubidium are known. Naturally occurring rubidium is made of two isotopes, 85Rb and 87Rb. Rubidium-87 is present to the extent of 27.83% in natural rubidium and is a beta emitter with a half-life of 4.9 × 1010 years. Ordinary rubidium is sufficiently radioactive to expose a photographic film in about 30 to 60 days. Rubidium forms four oxides: Rb2O, Rb2O2, Rb2O3, Rb2O4. Because rubidium can be easily ionized, it has been considered for use in “ion engines” for space vehicles; however, cesium is somewhat more efficient for this purpose. It is also proposed for use as a working fluid for vapor turbines and for use in a thermoelectric generator using the magnetohydrodynamic principle where rubidium ions are formed by heat at high temperature and passed through a magnetic field. These conduct electricity and act like an armature of a generator thereby generating an electric current. Rubidium is used as a getter in vacuum tubes and as a photocell component. It has been used in making special glasses. RbAg4I5 is important, as it has the highest room-temperature conductivity of any known ionic crystal. At 20°C its conductivity is about the same as dilute sulfuric acid. This suggests use in thin film batteries and other applications. The present cost in small quantities is about $50/g (99.8% pure).


In making rubidium salts; as a reagent in making zeolite catalysts; in photoelectric cells.


Because rubidium is a much larger atom than lithium or sodium, it gives up its outer valence electron easily, thus becoming a positive ion (oxidation state = Ru+). Rubidium forms numerous compounds, but only a few are useful. One of the main uses for rubidium is as a getter in vacuum tubes used in early radios, TVs, and cathode-ray tubes. When rubidium gas is placed in sealed glass cells along with an inert gas, it becomes a rubidium-gas cell clock. Because of the consistent and exact frequency (vibrations) of it atoms, it is a very accurate timekeeper. Rubidium and selenium are used in the manufacture of photoelectric cells, sometimes called electric eyes. Rubidium is a very caustic alkali (base) with a high pH value that makes it an excellent reducing agent (highly electropositive) in industry and chemical laboratories. A unique use is its ability to locate brain tumors. It is a weak radioisotope able to attach itself to diseased tissue rather than healthy tissue, thus making detection possible.


Metallic element of atomic num- ber 37, group IA of the periodic table, aw 85.4678, valence = 1. One stable form, principal natural radioactive isotope is rubidium-87. It is the sec- ond most electropositive and the second most alka- line element, has low


A soft silvery highly reactive element of the alkali-metal group. Naturally occurring rubidium comprises two isotopes, one of which, 87Rb, is radioactive (half-life 5 × 1010 years). It is found in small amounts in several complex silicate minerals, including lepidolite. Rubidium is used in vacuum tubes, photocells, and in making special glass. Symbol: Rb; m.p. 39.05°C; b.p. 688°C; r.d. 1.532 (20°C); p.n. 37; r.a.m. 85.4678.


rubidium: Symbol Rb. A soft silvery white metallic element belonging togroup 1 (formerly IA) of the periodictable; a.n. 37; r.a.m. 85.47; r.d. 1.53;m.p. 38.89°C; b.p. 688°C. It is foundin a number of minerals (e.g. lepidolite)and in certain brines. The metalis obtained by electrolysis of moltenrubidium chloride. The naturally occurringisotope rubidium–87 is radioactive(see rubidium–strontiumdating). The metal is highly reactive,with properties similar to those ofother group 1 elements, ignitingspontaneously in air. It was discoveredspectroscopically by Robert Bunsenand Gustav Kirchhoff in 1861.

일반 설명

A soft silvery metal. Shipped in very limited quantities sealed in a copper tube and over packed in a wooden box. Used in electronics.

공기와 물의 반응

Tarnishes rapidly upon exposure to air. Reacts violently with water to form corrosive RUBIDIUM hydroxide and hydrogen, a flammable gas. The heat of the reaction usually ignites the hydrogen.

반응 프로필

RUBIDIUM METAL is a strong reducing agent. Burns spontaneously in dry oxygen [Mellor 2:468 1946-47]. Readily catches fire in air when molten or with a sulfur vapor [Mellor 2: 469 1946-47]. Causes explosive decomposition of maleic anhydride. [Chem Safety Data Sheet SD-88 1962; Chem. Haz. Info. Series C-71 1960] Burns in chlorine [Mellor 2, Supp. 1:380 1956]. Interaction with mercury is exothermic and may be violent, [Mellor, 1941, Vol. 2, 469].


Reacts vigorously with air and water, must be stored under kerosene or similar liquid, danger- ous fire and explosion risk. Metal causes serious skin burns.


The major hazard is from fire and explosions of the elemental metallic form of rubidium.It must be stored in an inert atmosphere or in kerosene. When rubidium contacts skin, itignites and keeps burning and produces a deep, serious wound. Water and blood just make itreact more vigorously.
Many of the compounds of rubidium are toxic and strong irritants to the skin and lungs.It is one of the elements best left to experienced handlers.
Very small traces of rubidium are found in the leaves of tobacco, tea, and coffee, as well asin several edible plants, but these radiation traces are harmless when used in moderation.


Inhalation or contact with vapors, substance or decomposition products may cause severe injury or death. May produce corrosive solutions on contact with water. Fire will produce irritating, corrosive and/or toxic gases. Runoff from fire control may cause pollution.


Produce flammable gases on contact with water. May ignite on contact with water or moist air. Some react vigorously or explosively on contact with water. May be ignited by heat, sparks or flames. May re-ignite after fire is extinguished. Some are transported in highly flammable liquids. Runoff may create fire or explosion hazard.

Safety Profile

Moderately toxic by intraperitoneal route. A very reactive alkali metal (more reactive than potassium or cesium). In the body, rubidlum substitutes for potassium as an intracellular ion. The ratio of Rb/K intake is important in the toxicology of rubidium. A ratio above 40% is dangerous. In rats, a failure to gain weight is the first symptom, followed by ataxia and hyperirritabhty. Symptoms include: skin ulcers, poor hair coat, sensitivity, and extreme nervousness leading to convulsions and death. hazard when exposed to heat or flame or by chemical reaction with oxidlzers. Igmtes on contact with air, oxygen, and halogens. A very dangerous fire and explosion RUBIDIUM HYDROXIDE RPZOOO 121 5 Ignites spontaneously on contact with water. Reaction with water, moisture, or steam forms explosive hydrogen gas, whch then ignites. Explodes in contact with liquid bromine. Can react explosively with air, halogens, mercury, nonmetals, vanadium chloride oxide, moisture, acids, oxidizers. Violent reaction with vanadium trichloride oxide (at 60℃C), Cl202, P. Molten rubidium ignites in sulfur vapor and reacts vigorously with carbon. RbOH is more basic than KOH. Storage and handling: Keep under benzene, petroleum, or other liquids not containing gaseous O2. When heated to decomposition it emits toxic fumes of RbzO. See also SODIUM and SODIUM POTASSIUM ALLOY.

루비듐 준비 용품 및 원자재


준비 용품

루비듐 공급 업체

글로벌( 71)공급 업체
공급자 전화 팩스 이메일 국가 제품 수 이점
Mainchem Co., Ltd.
+86-0592-6210733 CHINA 32447 55
Hubei Jusheng Technology Co.,Ltd.
027-59599243 CHINA 28236 58
Hubei xin bonus chemical co. LTD
027-59338440 CHINA 23049 58
J & K SCIENTIFIC LTD. 400-666-7788 +86-10-82848833
86-10-82849933; China 96815 76
Meryer (Shanghai) Chemical Technology Co., Ltd. +86-(0)21-61259100(Shanghai) +86-(0)755-86170099(ShenZhen) +86-(0)10-62670440(Beijing)
+86-(0)21-61259102(Shanghai) +86-(0)755-86170066(ShenZhen) +86-(0)10-88580358(Beijing) China 40269 62
Alfa Aesar 400-610-6006; 021-67582000
021-67582001/03/05 China 30163 84
Energy Chemical 021-58432009 / 400-005-6266
021-58436166-800 China 44025 61
Chengdu XiYa Chemical Technology Co., Ltd. 4008-626-111
028-84752058 China 9629 57
Spectrum Chemical Manufacturing Corp. 021-67601398,18616765336,QQ:3003443155
021-57711696 China 9689 60
Cheng Du Micxy Chemical Co.,Ltd 028-85632863 028-64559668 18048500443
028-85632863 QQ: 2509670926 China 13071 58

루비듐 관련 검색:

Copyright 2019 © ChemicalBook. All rights reserved