ChemicalBook > Product Catalog >Inorganic chemistry >Elementary substance >Sulfur


Sulfur Suppliers list
Company Name: Capot Chemical Co.,Ltd.
Tel: +86 (0)571-855 867 18
Products Intro: Product Name:Sulfur
Purity:99% Package:100g;1kg;5kg,10kg,25kg,50kg
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Products Intro: Product Name:Sulfur
Company Name: Chemson Industrial (Shanghai) Co., Ltd.
Tel: 86-21-65208861-ext8007
Products Intro: Product Name:Sulfur; Brimstone
Purity:99.50% Package:25KG;0.8USD
Company Name: Meihua Biological Technology Co.,Ltd
Tel: 15175972705
Products Intro: Product Name:Sulfur
Purity:99% Package:1KG;10USD
Company Name: career henan chemical co
Tel: +86-371-86658258
Products Intro: Product Name:Sulfur
CAS: 7704-34-9
Purity:99% Package:1kg;1USD

Lastest Price from Sulfur manufacturers

  • Sulfur
  • US $1.00 / kg
  • 2018-12-18
  • CAS: 7704-34-9
  • Min. Order: 1 g
  • Purity: 99%
  • Supply Ability: 100KG
  • Sulfur
  • US $10.00 / KG
  • 2018-10-22
  • CAS:7704-34-9
  • Min. Order: 10G
  • Purity: 99%
  • Supply Ability: 1000kg
  • Sulfur; Brimstone
  • US $0.80 / KG
  • 2018-04-25
  • CAS:7704-34-9
  • Min. Order: 25KG
  • Purity: 99.50%
  • Supply Ability: 1000tons
Sulfur Basic information
Product Name:Sulfur
Synonyms:MICROTHIOL SPECIAL;RASULF;SULFUR;SULFUR, AAS STANDARD SOLUTION;cosan145(nuosept145);cosan80;Crude sicilian sulfur;Crystex
Product Categories:Sulfur;Rubber Chemicals;Nonmetallic Element;Inorganics;FUNGICIDE;metal or element;-;Essential Chemicals;Reagent Grade;Routine Reagents;AcaricidesMicro/Nanoelectronics;Electronic Chemicals;Pure Elements;InorganicsPesticides&Metabolites;AcaricidesPesticides;Alpha sort;Fungicides;Pesticides;Pesticides&Metabolites;Q-ZAlphabetic;S;SN - SZ;rubber vulcanizing agent
Mol File:7704-34-9.mol
Sulfur Structure
Sulfur Chemical Properties
Melting point 114 °C
Boiling point 445 °C
density 2.36
vapor density 8.9 (vs air)
vapor pressure 1 mm Hg ( 183.8 °C)
Fp 168 °C
solubility carbon disulfide: in accordance1g/5mL
form powder
color Yellow
Specific Gravity2.07
resistivity2E23 μΩ-cm, 20°C
Water Solubility Insoluble
Merck 13,9059 / 13,9067
CAS DataBase Reference7704-34-9(CAS DataBase Reference)
NIST Chemistry ReferenceSulfur atom(7704-34-9)
EPA Substance Registry SystemSulfur(7704-34-9)
Safety Information
Hazard Codes F,Xi
Risk Statements 11-38
Safety Statements 16-26-46
RIDADR UN 1350 4.1/PG 3
WGK Germany 1
RTECS WS4250000
Autoignition Temperature450 °F &_& 450 °F
HazardClass 4.1
PackingGroup III
HS Code 28020000
Hazardous Substances Data7704-34-9(Hazardous Substances Data)
MSDS Information
Sulfur English
SigmaAldrich English
ACROS English
ALFA English
Sulfur Usage And Synthesis
DescriptionSulfur belongs to a nonmetallic chemical element (pure product: yellow crystalline solid) under the symbol S. It can actively react with many other elements. It exists in various kinds of forms and compound such as sulfide and sulfate minerals which can be found everywhere around the universe and earth. It is also a key element for all life as the major component of amino acids, vitamins and many other cofactors. Sulfur has applications in various kinds of fields. For example, one of its biggest applications is for the production of sulfuric acid for sulfate and phosphate fertilizers. It is also used for the manufacturing of insecticides, fungicides, and bactericides. In pharmaceutical, it can be used for the manufacturing of many kinds of sulfur-containing antibiotics.
Chemical PropertiesSulfur, S, is a nonmetallic element that exists in a crystalline or amorphous form and in four stable isotopes. Sulfur melts at temperatures rangingfrom 112.8°C (234 °F) for the rhombic form to 120.0°C(248 °F) for amorphous sulfur,and all forms boil at 444.7°C (835°F). Sulfur occurs as free sulfur in many volcanic areas and is often associated with gypsum and limestone. It is used as a chemical intermediate and fungicide and in the vulcanization of rubber.
Chemical PropertiesSulfur is a yellow crystalline solid or powder. Often transported in the molten state.
HistorySulfur is found in meteorites. A dark area near the crater Aristarchus on the moon has been studied by R. W. Wood with ultraviolet light. This study suggests strongly that it is a sulfur deposit. Sulfur occurs native in the vicinity of volcanoes and hot springs. It is widely distributed in nature as iron pyrites, galena, sphalerite, cinnabar, stibnite, gypsum, Epsom salts, celestite, barite, etc. Sulfur is commercially recovered from wells sunk into the salt domes along the Gulf Coast of the U.S. It is obtained from these wells by the Frasch process, which forces heated water into the wells to melt the sulfur, which is then brought to the surface. Sulfur also occurs in natural gas and petroleum crudes and must be removed from these products. Formerly this was done chemically, which wasted the sulfur. New processes now permit recovery, and these sources promise to be very important. Large amounts of sulfur are being recovered from Alberta gas fields. Sulfur is a pale yellow, odorless, brittle solid that is insoluble in water but soluble in carbon disulfide. In every state, whether gas, liquid or solid, elemental sulfur occurs in more than one allotropic form or modification; these present a confusing multitude of forms whose relations are not yet fully understood. Amorphous or “plastic” sulfur is obtained by fast cooling of the crystalline form. X-ray studies indicate that amorphous sulfur may have a helical structure with eight atoms per spiral. Crystalline sulfur seems to be made of rings, each containing eight sulfur atoms that fit together to give a normal X-ray pattern. Twenty-one isotopes of sulfur are now recognized. Four occur in natural sulfur, none of which is radioactive. A finely divided form of sulfur, known as flowers of sulfur, is obtained by sublimation. Sulfur readily forms sulfides with many elements. Sulfur is a component of black gunpowder, and is used in the vulcanization of natural rubber and a fungicide. It is also used extensively is making phosphatic fertilizers. A tremendous tonnage is used to produce sulfuric acid, the most important manufactured chemical. It is used in making sulfite paper and other papers, as a fumigant, and in the bleaching of dried fruits. The element is a good electrical insulator. Organic compounds containing sulfur are very important. Calcium sulfate, ammonium sulfate, carbon disulfide, sulfur dioxide, and hydrogen sulfide are but a few of the many other important compounds of sulfur. Sulfur is essential to life. It is a minor constituent of fats, body fluids, and skeletal minerals. Carbon disulfide, hydrogen sulfide, and sulfur dioxide should be handled carefully. Hydrogen sulfide in small concentrations can be metabolized, but in higher concentrations it can quickly cause death by respiratory paralysis. It is insidious in that it quickly deadens the sense of smell. Sulfur dioxide is a dangerous component in atmospheric pollution. Sulfur (99.999%) costs about $575/kg.
HistorySulfur was known to the alchemists from ancient times as brimstone. Lavoisier in 1772 proved sulfur to be an element. The element derived its name from both the Sanskrit and Latin names Sulvere and Sulfurium, respectively. Sulfur is widely distributed in nature, in earth's crust, ocean, meteorites, the moon, sun, and certain stars. It also is found in volcanic gases, natural gases, petroleum crudes, and hot springs. It is found in practically all plant and animal life. Most natural sulfur is in iron sulfides in the deep earth mantle. The abundance of sulfur in earth’s crust is about 350 mg/kg. Its average concentration in seawater is estimated to be about 0.09%. Sulfur occurs in earth’s crust as elemental sulfur (often found in the vicinity of volcanoes), sulfides, and sulfates. The most important sulfur-containing ores are iron pyrite, FeS2; chalcopyrite, CuFeS2; sphalerite, ZnS; galena, PbS; cinnabar HgS; gypsum CaSO4•2H2O; anhydrite CaSO4; kieserite, MgSO4•H2O; celestite, SrSO4; barite, BaSO4; and. stibnite, Sb2S3.
UsesElemental sulfur is used for vulcanizing rubber; making black gunpowder; as a soil conditioner; as a fungicide; preparing a number of metal sulfides; and producing carbon disulfide. It also is used in matches; bleaching wood pulp, straw, silk, and wool; and in synthesis of many dyes. Pharmaceutical grade precipitated and sublimed sulfurs are used as scabicides and as antiseptics in lotions and ointments.
Important sulfur compounds include sulfuric acid, sulfur dioxide, hydrogen 890 SULFUR sulfide, sulfur trioxide, and a number of metal sulfides and metal oxo- salts such as sulfates, bisulfates, and sulfites. Numerous organic compounds contain sulfur, such as mercaptans, thiophenes, thiophenols, sulfate esters, sulfones, and carbon disulfide.
Usessulfur (colloidal) reduces oil-gland activity and dissolves the skin’s surface layer of dry, dead cells. This ingredient is commonly used in acne soaps and lotions, and is a major component in many acne preparations. It can cause allergic skin reactions.
Usessulfur is a mild anti-septic used in acne creams and lotions. It stimulates healing when used on skin rashes. Sulfur may cause skin irritation.
Production MethodsElemental sulfur is recovered from its ore deposits found throughout the world. It is obtained commercially by the Frasch process, recovery from wells sunk into salt domes. Heated water under pressure is forced into the underground deposits to melt sulfur. Liquid sulfur is then brought to the surface. Sulfur is recovered by distillation. Often the ore is concentrated by froth flotation.
Elemental sulfur also is recovered as a by-product in processing natural gas and petroleum. Refining operations of natural gas and petroleum crude produce hydrogen sulfide, which also may occur naturally. Hydrogen sulfide is separated from hydrocarbon gases by absorption in an aqueous solution of alkaline solvent such as monoethanol amine. Hydrogen sulfide is concentrated in this solvent and gas is stripped out and oxidized by air at high temperature in the presence of a catalyst (Claus process).
Elemental sulfur also may be obtained by smelting sulfide ores with a reducing agent, such as coke or natural gas, or by reduction of sulfur dioxide.
ReactionsSulfur forms two oxides, sulfur dioxide, SO2, and the trioxide, SO3. It burns in oxygen at about 250°C or in air above 260°C, forming sulfur dioxide. In excess oxygen the trioxide is obtained.
Sulfur reacts with hydrogen at 260 to 350°C forming hydrogen sulfide. The reaction is slow at this temperature and does not go to completion. The reaction is catalyzed by activated alumina.
Reactions with excess chlorine or fluorine yield sulfur tetrachloride, SCl4, or hexafluoride, SF6. These reactions occur under cold conditions.
Sulfur reacts with sulfur dioxide in an electric discharge to form disulfuroxide, S2O.
Sulfur reacts with aqueous sulfide to form polysulfides: S + Na2S → Na2S2
With aqueous solution of sulfite the product is thiosulfate:
S + SO32– → S2O32–
Thiosulfate also is obtained by heating sulfur with powdered sulfite:
S + Na2SO3 → Na2S2O3
When heated with alkali cyanide, thiocyanate salt is obtained:
A similar reaction occurs in the aqueous phase in which thiocyanate is obtained by evaporation and crystallization.
Sulfur combines with alkali metals, copper, silver, and mercury on cold contact with the solid, forming sulfides. Reactions with magnesium, zinc, and cadmium occur to a small degree at ordinary temperatures, but rapidly on heating. Sulfur reacts with phosphorus, arsenic, antimony, bismuth, and silicon at their melting points and with other elements at elevated temperatures forming binary sulfides. Sulfides of tellurium, gold, platinum, and iridium are difficult to obtain even at elevated temperatures. Sulfur does not react with inert gases, nitrogen, and iodine.
Brand nameLiquamat (Galderma ); Sastid (Stiefel); Sulfur Soap (Stiefel).
General DescriptionA pale yellow crystalline solid with a faint odor of rotten eggs. Insoluble in water. A fire and explosion risk above 450° F. Transported as a yellow to red liquid. Handled at elevated temperature (typically 290°F) to prevent solidification and makes transfers easier. Hot enough that plastic or rubber may melt or lose strength. Causes thermal burns to skin on contact. Cools rapidly and solidifies if released. Equipment designed to protect against ordinary chemical exposure is ineffective against the thermal hazard. Exercise caution walking on the surface of a spill to avoid breakthrough into pockets of molten sulfur below the crust. Do not attempt to remove sulfur impregnated clothing because of the danger of tearing flesh if a burn has resulted. May be irritatin to skin, eyes and mucous membranes. Used in sulfuric acid production, petroleum refining, and pulp and paper manufacturing.
Air & Water ReactionsFlammable. Insoluble in water.
Reactivity ProfileSULFUR reacts violently with strong oxidizing agents causing fire and explosion hazards [Handling Chemicals Safely 1980 p. 871]. Reacts with iron to give pyrophoric compounds. Attacks copper, silver and mercury. Reacts with bromine trifluoride, even at 10°C [Mellor 2:113. 1946-47]. Ignites in fluorine gas at ordinary temperatures [Mellor 2:11-13 1946-47]. Reacts to incandescence with heated with thorium [Mellor 7:208 1946-47]. Can react with ammonia to form explosive sulfur nitride. Reacts with calcium phosphide incandescently at about 300°C. Reacts violently with phosphorus trioxide [Chem. Eng. News 27:2144 1949]. Mixtures with ammonium nitrate or with metal powders can be exploded by shock [Kirk and Othmer 8:644]. Combinations of finely divided sulfur with finely divided bromates, chlorates, or iodates of barium, calcium, magnesium, potassium, sodium, or zinc can explode with heat, friction, percussion, and sometimes light [Mellor 2 Supp.1:763. 1956]. A mixture with barium carbide heated to 150°C becomes incandescent. Reacts incandescently with calcium carbide or strontium carbide at 500°C. Attacks heated lithium, or heated selenium carbide with incandescence [Mellor 5:862 1946-47]. Reacts explosively if warmed with powdered zinc [Mellor 4:476. 1946-47]. Reacts vigorously with tin [Mellor 7:328. 1946-47]. A mixture with potassium nitrate and arsenic trisulfide is a known pyrotechnic formulation [Ellern 1968 p. 135]. Mixtures with any perchlorate can explode on impact [ACS 146:211-212]. A mixture of damp sulfur and calcium hypochlorite produces a brilliant crimson flash with scatter of molten sulfur [Chem. Eng. News 46(28):9 1968]. Takes fire spontaneously in chlorine dioxide and may produce an explosion [Mellor 2:289 (1946-47)]. Ignites if heated with chromic anhydride ignite and can explode, [Mellor 10:102 (1946-47)]. Even small percentages of hydrocarbons in contact with molten sulfur generate hydrogen sulfide and carbon disulfide, which may accumulate in explosive concentrations. Sulfur reacts with Group I metal nitrides to form flammable mixtures, evolving flammable and toxic NH3 and H2S gasses if water is present. (Mellor, 1940, Vol. 8, 99).
Health HazardCan cause eye irritation; may rarely irritate skin. If recovered sulfur, refer to hydrogen sulfide.*
Agricultural UsesBrimstone is coarsely ground sulphur which is used to increase the acidity of soil and correct sulphur deficiency inplants.
Agricultural UsesSulphur (S) is a yellow, non-metallic element belonging to Group 16 (formerly VI B) of the Periodic Table. It is a macronutrient required by plants in relatively large amounts. Potato, cereals and grasses require about 20 kg/ha sulphur, while its ideal dosage for the Brassiceae family of crops is 50 kg/ha.
Soil-sulphur reactions are similar to soil-nitrogen reactions, and are dominated by organic or microbial fractions in the soil. Approximately 90% sulphur required by plants is for the synthesis of amino acids (namely, cysteine, cystine and methionhe) which are essential components of proteins and contain 6 to 8% S.
One of the main functions of sulphur in proteins is to form sulphur-sulphur (-S-S-) bonds between polypeptide chains which are essential for the protein conformation relevant to its catalytic or structural properties. Depending on their sulphur requirement, crops are divided into three groups. The first includes crops with a high sulphur requirement - in a range 20 to 80 kg/ha. Crucifers and Brassiceae fall in this group. The second group requires sulphur in a moderate range - 10 to 50 kg/ha and includes plantation crops. The third group needs sulphur in small quantities - 5 to 25 kg/ha and includes cereals, forages and other field crops. As a rule, sulphur requirement is 3 to 4 kg/ton of grains, 8 kg/ton of grain legumes and 12 kg/ton of oil seeds.
Soil can lose sulphur by (a) its removal by crops, (b) leaching and erosion, (c) sulphate adsorption and retention by clays, and (d) cultivation. Decomposition of organic matter is accelerated by cultivation, which improves soil segregation and aeration. The oxidation of organic matter causes a decline in organic sulphur.
Sulphur is needed for the synthesis of co-enzyme A, biotin, thiamine and glutathione. It is also present in substances like sulphur-adenosyl methionhe, formyl methionhe, lipoic acid and sulfolipid.
Sulphur plays an important role in chlorophyll synthesis. It is part of ferridoxins, a type of non-heme iron-sulphur (Fe-S) protein occurring in chloroplasts and involved in the reduction of nitrite and sulphate, and in the assimilation of nitrogen by bacteria.
Sulphur enhances the formation of oil in crops like soybean and flax. Plant roots absorb sulphur as sulphate ions. Small quantities of sulphur dioxide (SO2) can be absorbed through plant leaves and used in the plant. The concentration of sulphur in plants is 0.1 to 4% which is equal to, or less than, the amount of phosphorus in wheat, corn, beans and potato but is more than the phosphorus content in alfalfa, cabbage and turnip.
There is a close relationship between organic C, total N and total S in soils. The C: N: S ratio in most welldrained, non-calcareous soils is approximately
120: 10: 1.4. Generally, the C: S ratio varies much more than the N: S ratio, the latter falling within a narrow range of 6 to 8.1. Sulphur may be immobilized in soils whenthe C: S or N: S ratio is large.
Safety ProfilePoison by ingestion, intravenous, and intraperitoneal routes. A human eye irritant. A fungcide. Chronic inhalation can cause irritation of mucous membranes. Combustible when exposed to heat or flame or by chemical reaction with oxidzers. Explosive in the form of dust when exposed to flame. Can react violently with halogens, carbides, halogenates, halogenites, zinc, uranium, tin, sodium, lithium, nickel, palladium, phosphorus, potassium, indum, calcium, boron, aluminum, (aluminum + niobium pentoxide), ammonia, ammonium nitrate, ammonium perchlorate, BrF5, BrF3, (Ca + VO + H20), Ca(OCl)2, Cad%, Cs3N, charcoal, (Cu + chlorates), ClO2, Cl0, ClF3, CrO3, Cr(OCl)2, hydrocarbons, IF5,IO5, Pb02, Hg(NO3)2, HgO, Hg20, NO2, P2O3, (KNO3 + As2S3), K3N, KMn04, AgNO3, Ag20, NaH, (NaNO3 + charcoal), (Na + SnI4), SCl2, T12O3, F2. Can react with oxidzing materials. To fight fire, use water or special mixtures of dry chemical. When heated it burns and emits highly toxic fumes of SOX. See also NUISANCE DUSTS.
Potential ExposureWidely used in manufacture of sulfuric acid; carbon bisulfide; drugs, fungicides, gunpowder, wood pulp; rubber, and other products.
First aidIf this chemical gets into the eyes, remove any contact lenses at once and irrigate immediately for at least 15 minutes, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts the skin, remove contaminated clothing and wash immediately with soap and water. Seek medical attention immediately. If this chemical has been inhaled, remove from exposure, begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR if heart action has stopped. Transfer promptly to a medical facility. When this chemical has been swallowed, get medical attention. Give large quantities of water and induce vomiting. Do not make an unconscious person vomit.
ShippingUN1350 Sulfur, Hazard Class: 4.1; Labels: 4.1-Flammable solid (International). NA1350 Sulfur, Hazard class: 9; Labels: 9-Miscellaneous hazardous material (Domestic). UN2448 Sulfur, molten, Hazard Class: 4.1; Labels: 4.1-Flammable solid (International). NA 2448 Sulfur, molten Hazard class: 9; Labels: 9-Miscellaneous hazardous material (Domestic).
Purification MethodsMurphy, Clabaugh & Gilchrist [J Res Nat Bur Stand 64A 355 1960] have obtained sulfur of about 99.999% purity by the following procedure: Roll sulfur was melted and filtered through a coarse-porosity glass filter funnel into a 2L round-bottomed Pyrex flask with two necks. Conc H2SO4 (300mL) was added to the sulfur (2.5kg), and the mixture was heated to 150o, stirring continuously for 2hours. Over the next 6hours, conc HNO3 was added in about 2mL portions at 10-15minutes intervals to the heated mixture. It was then allowed to cool to room temperature and the acid was poured off. The sulfur was rinsed several times with distilled water, then remelted, cooled, and rinsed several times with distilled water again, this process being repeated four or five times to remove most of the acid entrapped in the sulfur. An air-cooled reflux tube (ca 40cm long) was attached to one of the necks of the flask, and a gas delivery tube (the lower end about 2.5cm above the bottom of the flask) was inserted into the other. While the sulfur was boiled under reflux, a stream of helium or N2 was passed through to remove any water, HNO3 or H2SO4, as vapours. After 4hours, the sulfur was cooled so that the reflux tube could be replaced by a bent air-cooled condenser. The sulfur was then distilled, rejecting the first and the final 100mL portions, and transferred in 200mL portions to 400mL glass cylinder ampoules (which were placed on their sides during solidification). After adding about 80mL of water, displacing the air with N2, the ampoule was cooled, and the water was titrated with 0.02M NaOH, the process being repeated until the acid content was negligible. Finally, entrapped water was removed by alternate evacuation to 10mm Hg and refilling with N2 while the sulfur was kept molten. The ampoules were then sealed. Other purifications include crystallisation from CS2 (which is less satisfactory because the sulfur retains appreciable amounts of organic material), *benzene or *benzene/acetone, followed by melting and degassing. It has also been boiled with 1% MgO, then decanted, and dried under a vacuum at 40o for 2days over P2O5. [For the purification of S6, “recrystallised S8” and “Bacon-Fanelli sulfur” see Bartlett et al. J Am Chem Soc 83 103, 109 1961.]
IncompatibilitiesWidely used in manufacture of sulfuric acid; carbon bisulfide; drugs, fungicides, gunpowder, wood pulp; rubber, and other products.
Waste DisposalSalvage for reprocessing or dump to landfill.
Sulfur Preparation Products And Raw materials
Raw materialsAcetic acid glacial-->Sodium carbonate-->Ammonia-->Carbon disulphide-->CARBON MONOXIDE-->HYDROGEN SULFIDE-->Sulphur-->Sodium hydrosulfide-->Titanium dioxide-->Phenolic epoxy resin-->Talc-->Bifenthrin-->Vanadium pentoxide -->4-Hydroxybenzenesulfonic acid-->PYRITE-->Triethylene glycol dimethacrylate-->Potassium sodium tartrate -->Heat exchanger-->Carbon monoxide and hydrogen mixtures
Tag:Sulfur(7704-34-9) Related Product Information
Poly(sodium-p-styrenesulfonate) 2-(Methylthio)-beta-naphthothiazole COCHRANES ORBIT-SIZE SULFUR PIECES 2-Amino-5-bromobenzenethiol 2-Aminobenzenethiol Epoxy polyester powder coating,mixed type 2,5-Diethoxy-4-((4-methylphenyl)thio)aniline 6-Thioguanine Zinc pyrithione Benzotriazole-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate [35S]SULFUR ESCHKA?S MIXTURE (FOR DETERMINATION OF SULFUR IN COAL) 2,5-Diethoxy-4-((4-methylphenyl)thio)nitrobenzene Sulphur Lemon Yellow 2-Methyl-4'-(methylthio)-2-morpholinopropiophenone Sulfur chloride oxide,Sulfur oxychloride (socl2),Sulfur chloride oxide (Cl2SO),Sulfur chloride oxide (scl2o) sulfur dioxide Sulfur