ChemicalBook--->CAS DataBase List--->1918-00-9

1918-00-9

1918-00-9 Structure

1918-00-9 Structure
IdentificationMore
[Name]

Dicamba
[CAS]

1918-00-9
[Synonyms]

2,5-dichloro-6-methoxybenzoic acid
2-METHOXY-3,6-DICHLOROBENZOIC ACID
3,6-DICHLORO-2-METHOXY BENZOIC
3,6-DICHLORO-O-ANISIC ACID
AKOS BBS-00007704
AURORA 22599
BANVEL
BANVEL(R)
BANZEL
BANZEL SGF
DICAMBA
MEDIBEN
MEDIBEN(R)
MEDIBEN(TM)
TIMTEC-BB SBB003348
VELSICOL 58-CS-11(R)
3,6-Dichloor-2-methoxy-benzoeizuur
3,6-Dichlor-3-methoxy-benzoesaeure
3,6-dichloro-2-methoxy-benzoicaci
3,6-dichloro-o-anisicaci
[EINECS(EC#)]

217-635-6
[Molecular Formula]

C8H6Cl2O3
[MDL Number]

MFCD00055283
[Molecular Weight]

221.04
[MOL File]

1918-00-9.mol
Chemical PropertiesBack Directory
[Melting point ]

112-116 °C (lit.)
[Boiling point ]

316.96°C (rough estimate)
[density ]

1.57
[refractive index ]

1.5000 (estimate)
[Fp ]

2 °C
[storage temp. ]

2-8°C
[solubility ]

Chloroform (Slightly), Methanol (Slightly)
[form ]

Crystals
[pka]

2.40±0.25(Predicted)
[color ]

White
[Water Solubility ]

50 g/100 mL
[λmax]

223nm(lit.)
[Merck ]

13,3065
[BRN ]

2453039
[LogP]

2.210
[CAS DataBase Reference]

1918-00-9(CAS DataBase Reference)
[NIST Chemistry Reference]

Benzoic acid, 3,6-dichloro-2-methoxy-(1918-00-9)
[EPA Substance Registry System]

1918-00-9(EPA Substance)
Safety DataBack Directory
[Hazard Codes ]

Xn,N,F
[Risk Statements ]

R22:Harmful if swallowed.
R41:Risk of serious damage to eyes.
R52/53:Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment .
R36:Irritating to the eyes.
R20/21/22:Harmful by inhalation, in contact with skin and if swallowed .
R11:Highly Flammable.
[Safety Statements ]

S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice .
S61:Avoid release to the environment. Refer to special instructions safety data sheet .
S36:Wear suitable protective clothing .
S16:Keep away from sources of ignition-No smoking .
[RIDADR ]

UN 3077 9/PG 3
[WGK Germany ]

2
[RTECS ]

DG7525000
[HS Code ]

29189900
[Safety Profile]

Moderately toxic by ingestion. Mutation data reported. When heated to decomposition it emits toxic fumes of Cl-.
[Hazardous Substances Data]

1918-00-9(Hazardous Substances Data)
[Toxicity]

LD50 orally in rats: 1040 mg/kg (Bailey, White)
Raw materials And Preparation ProductsBack Directory
[Raw materials]

Sodium hydroxide-->Hydrochloric acid-->Potassium hydroxide-->Carbon dioxide-->Chloromethane-->Cobalt chloride-->2,5-Dichlorophenol-->3,5-Dichlorobenzoic acid-->chlorobenzyl alcohol
[Preparation Products]

3,6-dichloro-o-anisic acid, compound with dimethylamine (1:1)
Hazard InformationBack Directory
[General Description]

DICAMBA(1918-00-9) is a white solid dissolved in a liquid carrier. The carrier is water emulsifiable. The primary hazard is the threat to the environment. Immediate steps should be taken to limit its spread to the environment. Since DICAMBA(1918-00-9) is a liquid DICAMBA(1918-00-9) can easily penetrate the soil and contaminate groundwater and nearby streams. DICAMBA(1918-00-9) can cause illness by inhalation, skin absorption and/or ingestion. DICAMBA(1918-00-9) is used as a herbicide.
[Reactivity Profile]

A halogenated benzoic acid derivative. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acids dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in DICAMBA to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions.
[Health Hazard]

SOLID: Harmful if swallowed.
[Fire Hazard]

Not flammable.
[Uses]

Dicamba is mainly used as an herbicide to control weeds, dock, bracken, and brush. Dicamba is frequently applied with other herbicides, including atrazine, glyphosate, imazethapyr, ioxynil, and mecoprop.
[Uses]

Herbicide.
[Uses]

Selective, systemic preemergence and postemergence herbicide used to control both annual and perennial broad-leaved weeds, chickweed, mayweed and bindweed in cereals and other related crops.
[Definition]

ChEBI: A methoxybenzoic acid that is O-methylsalicylic acid substituted by chloro groups at positions 3 and 6.
[Agricultural Uses]

Herbicide: Used to control annual and perennial broadleaf weeds in corn, sorghum, small grains, pastures, hay, rangeland, sugarcane, asparagus, turf, grass-seed crops, and non-croplands. It can be applied to the leaves or to the soil. Dicamba controls annual and perennial broadleaf weeds in grain crops and grasslands, and it is used to control brush and bracken in pastures. It will kill broadleaf weeds before and after they sprout. Legumes will be killed by dicamba. In combination with a phenoxyalkanoic acid or other herbicide, dicamba is used in pastures, range land, and non-crop areas such as fence-rows and roadways to control weeds.
[Trade name]

BANEX®; BANLEN®; BANVEL®; BANVEL 4S®; BANVEL 4WS®; BANVEL CST®; BANVEL HERBICIDE®; BANVEL II HERBICIDE®; BRUSH BUSTER®; BUSHWHACKER®; CADENCE®; CASWELL No. 295®; CLARITY®; COMPOUND B DICAMBA®; DIANATE®; DISTINCT®; DYVEL®; FALLOWMASTER®; FLOWMASTER®; GORDON’S TRIGUARD®; GORDON’S TRI-MEC®; MARKSMAN®; MEDIBEN®; NORTHSTAR®; SUMMIT®; TARGET®; TRACKER®; TROOPER®; VANQUISH®; VELSICOL 58-CS-11®; VELSICOL COMPOUND R®; WEEDMASTER®; YUKON®
[Biochem/physiol Actions]

Dicamba is a broad leaf growth regulator that mimics plant growth auxins. Dicamba is used as a herbicide and is effective against glyphosate-resistant (GR) giant ragweed.
[Pharmacology]

Dicamba is highly mobile in soils and will leach or move upward depending on the flux of the soil water. Adsorption to soils is generally limited, although a few studies using acidic kaolinite and muck soils showed that dicamba was adsorbed to these soils. Adsorption of dicamba is greatest at low soil pHs and is minimal at pHs greater than 6.0. Because dicamba is highly water soluble, it is reasonable to expect that some loss may occur via soil water runoff from the application zone. However, studies conducted by Trichelle et al. (44) showed that such losses were minimal, i.e., less than 5.5% of applied. The rate of dicamba volatilization is not clear, although it is likely that it does occur to some extent. On planchets, approximately 50% of applied dicamba volatilized over a period of 11 weeks. The significance of this result is questionable, because in a similar study using soil, there was no appreciable volatilization (45).
[Potential Exposure]

AgriculturalChemical; Mutagen. Those involved in manufacture, formulation, and application of this postemergence herbicide. Used to control allual and perennial broad leafweeds in corn, sorghum, small grain pastures, andnoncroplands.
[First aid]

If this chemical gets into the eyes, remove anycontact lenses at once and irrigate immediately for at least15 min, occasionally lifting upper and lower lids. Seek medical attention immediately. If this chemical contacts theskin, remove contaminated clothing and wash immediatelywith soap and water. Seek medical attention immediately. Ifthis chemical has been inhaled, remove from exposure,begin rescue breathing (using universal precautions, including resuscitation mask) if breathing has stopped and CPR ifheart action has stopped. Transfer promptly to a medicalfacility. When this chemical has been swallowed, get medical attention. Give large quantities of water and inducevomiting. Do not make an unconscious person vomit.
[Environmental Fate]

Biological. In a model ecosystem containing sand, water, plants and biota, dicamba was slowly transformed to 5-hydroxydicamba (10% after 32 days) which slowly underwent decarboxylation (Yu et al., 1975).
Soil. Smith (1974) studied the degradation of 14C-ring- and 14C-carboxyl-labeled dicamba in moist prairie soils at 25°C. After 4 weeks, >50% of the herbicide degraded to the principal products 3,6-dichlorosalicylic acid and carbon dioxide (Smith, 1974).
The half-lives for dicamba in soil incubated in the laboratory under aerobic conditions ranged from 0 to 32 days (Altom and Stritzke, 1973; Smith, 1973, 1974; Smith and Cullimore, 1975). In field soils, the half-lives for dicamba ranged from 6 to 10 days with an average half-life of 7 days (Scifres and Allen, 1973; Stewart and Gaul, 1977). The mineralization half-lives for dicamba in soil ranged from 147 to 309 days (Smith, 1974;Smith and Cullimore, 1975). In a Regina heavy clay, the loss of dicamba was rapid. Approximately 10% of the applied dosage was recovered after 5 weeks. At the end of 5 weeks, approximately 28% was transformed to 3,6-dichlorosalicylic acid and carbon dioxide (Smith, 1973a).
Groundwater. According to the U.S. EPA (1986) dicamba has a high potential to leach to groundwater.
Plant. Dicamba is hydrolyzed in wheat and Kentucky bluegrass plants to 5-hydroxy- 2-methoxy-3,6-dichlorobenzoic acid and 3,6-dichlorosalicylic acid at yields of 90 and 5%, respectively. The remaining 5% was unreacted dicamba (Broadhurst et al., 1966). Dicamba was absorbed from treated soils, translocated in corn plants and then converted to 3,6- dichlorosalicylic acid, p-aminobenzoic acid and benzoic acid (Krumzdorf, 1974).
Photolytic. When dicamba on silica gel plates was exposed to UV radiation (λ= 254 nm), it slowly degraded to the 5-hydroxy analog and water solubles (Humburg et al., 1989).
Chemical/Physical. Reacts with alkalies (Hartley and Kidd, 1987), amines and alkali metals (Worthing and Hance, 1991) forming very water-soluble salts.
When dicamba was heated at 900°C, carbon monoxide, carbon dioxide, chlorine, hydrochloric acid, oxygen and ammonia were produced (Kennedy et al., 1972, 1972a).
[storage]

Color Code—Blue: Health Hazard/Poison: Storein a secure poison location. Prior to working with dicamba you should be trained on its proper handling and storage.Store in tightly closed containers in a cool, well-ventilatedarea away from incompatible materials listed above, heat,and water.
[Shipping]

Benzoic derivative pesticides, solid, toxic, n.o.s.require a label of “POISONOUS/TOXIC MATERIALS.” Itfalls in Hazard Class 6.1
[Toxicity evaluation]

There is very little metabolism of dicamba in mammals, and most is excreted unchanged in the urine. For example, rat excreted 96% of ingested 14C-dicamba after 24 hours (46). The acute oral LD50 for rat is 1707 mg/kg.
[Incompatibilities]

Incompatible with sulfuric acid, bases,ammonia, aliphatic amines, alkanolamines, isocyanates,alkylene oxides, epichlorohydrin. Dicamba decomposes inheat, producing toxic and corrosive fumes including hydrogen chloride
Material Safety Data Sheet(MSDS)Back Directory
[msds information]

3,6-dichloro-2-methoxybenzoic acid(1918-00-9).msds
Questions And AnswerBack Directory
[Description]

Dicamba is a benzoic acid derivative used as a broad-spectrum herbicide. Dicamba can be used to control the annual and perennial rose weeds in grain crops and highlands, to control brush and bracken in pastures as well as legumes and cacti. It kills broadleaf weeds both before and after they sprout. Dicamba takes effect through stimulating the outgrowth of plant, which causes the exhaustion of nutrients supplies and plant death. This is based on the nature of Dicamba, which is a synthetic mimic of natural auxin (a plant hormone used for simulating plant growth). Upon response to this kind of herbicide, the plant develops abnormalities such as leaf epinasty, leaf abscission, and growth inhibition of the root and shoots. Overall, the effects of auxinic herbicides can be divided into three consecutive phases in the plant: first, stimulation of abnormal growth and gene expression; second, inhibition of growth and physiological responses, such as stomatal closure; and third, senescence and cell death.
[Resistance]

Some farmers and researchers have expressed concern about herbicide resistance after the introduction of resistant crops.In the laboratory, researchers have demonstrated weed resistance to dicamba within three generations of exposure.Similar herbicide resistant weeds arose after the introduction of glyphosate-resistant crops (marketed as 'Roundup Ready').Some weed species, like Amaranthus palmeri, have developed resistance to dicamba. Dicamba resistance in Bassia scoparia was discovered in 1994 and has not been explained by common modes of resistance such as absorption, translocation, or metabolism.
[References]

Grossmann, Klaus. "Mode of action of auxin herbicides: a new ending to a long, drawn out story." Trends in Plant Science 5.12(2000):506-8. Grossmann, Klaus. "Auxin herbicides: current status of mechanism and mode of action." Pest Management Science 66.2(2010):113–120. Gleason, Cynthia, R. C. Foley, and K. B. Singh. "Mutant Analysis in Arabidopsis Provides Insight into the Molecular Mode of Action of the Auxinic Herbicide Dicamba." Plos One 6.3(2011):e17245.
Spectrum DetailBack Directory
[Spectrum Detail]

Dicamba(1918-00-9)MS
Dicamba(1918-00-9)1HNMR
Dicamba(1918-00-9)13CNMR
Dicamba(1918-00-9)IR1
Dicamba(1918-00-9)IR2
Well-known Reagent Company Product InformationBack Directory
[Sigma Aldrich]

1918-00-9(sigmaaldrich)
1918-00-9 suppliers list
Company Name: Hebei Saisier Technology Co., LTD
Tel: +86-18400010335 +86-13102810335 , +86-13102810335
Website: www.hbsaisier.cn
Company Name: Hangzhou Bayee Chemical Co., Ltd.
Tel: 0086-571-86990109
Website: www.bayeechem.com
Company Name: Henan Tianfu Chemical Co.,Ltd.
Tel: +86-0371-55170693 +86-19937530512 , +86-19937530512
Website: https://www.tianfuchem.com/
Company Name: Hubei Jusheng Technology Co.,Ltd.
Tel: 18871490254
Website: www.hubeijusheng.com
Company Name: Xiamen AmoyChem Co., Ltd
Tel: +86-592-6051114 +8618959220845 , +8618959220845
Website: http://www.amoychem.com/
Company Name: Chongqing Chemdad Co., Ltd
Tel: +86-023-61398051 +8613650506873 , +8613650506873
Website: http://www.chemdad.com/
Company Name: TopScience Biochemical
Tel: 00852-68527855
Website: www.chemicalbook.com/ShowSupplierProductsList892930/0.htm
Company Name: CONIER CHEM AND PHARMA LIMITED
Tel: +8618523575427 , +8618523575427
Website: http://www.conier.com/
Company Name: career henan chemical co
Tel: +86-0371-86658258 15093356674; , 15093356674;
Website: http://www.coreychem.com
Company Name: SIMAGCHEM CORP
Tel: +86-13806087780 , +86-13806087780
Website: http://www.simagchem.com/
Company Name: TargetMol Chemicals Inc.
Tel: +1-781-999-5354 +1-00000000000 , +1-00000000000
Website: https://www.targetmol.com/
Company Name: Hefei TNJ Chemical Industry Co.,Ltd.
Tel: 0551-65418671
Website: https://www.tnjchem.com
Company Name: Wuhan Monad Medicine Tech Co.,LTD
Tel: 02768782018 18771942761 , 18771942761
Website: www.chemicalbook.com/ShowSupplierProductsList1904828/0_EN.htm
Company Name: ANHUI WITOP BIOTECH CO., LTD
Tel: +8615255079626 , +8615255079626
Website: www.chemicalbook.com/showsupplierproductslist418627/0_en.htm
Company Name: Xi'an MC Biotech, Co., Ltd.
Tel: 029-89275612 +8618991951683 , +8618991951683
Website: www.chemicalbook.com/ShowSupplierProductsList1759320/0.htm
Company Name: Chemia Biotechnology(Shanghai) Co., Ltd
Tel: +8613816753574 , +8613816753574
Website: www.chemia-pharm.com
Company Name: Baoji Guokang Healthchem co.,ltd
Tel: +8615604608665 15604608665 , 15604608665
Website: www.gk-bio.com
Company Name: Henan Alfa Chemical Co., Ltd
Tel: +8618339805032 , +8618339805032
Website: www.chemicalbook.com/manufacturer/henan-alfa-chemical-570/
Tags:1918-00-9 Related Product Information
123-11-5 51-36-5 1466-76-8 100-66-3 100-09-4 99-50-3 625-45-6 104-94-9 456-55-3 579-75-9 1918-00-9