Chinese english Germany Japanese Korea

Eserin Produkt Beschreibung

Englisch Name:
Ezerin;Cogmine;cs58525;mcv4484;ESERINE;CS 58525;Erserine;Synapton;nih10421;NSC 30782

Eserin Eigenschaften

102-104 °C(lit.)
D17 -76° (c = 1.3 in chloroform); D25 -120° (benzene)
418.29°C (rough estimate)
1.166±0.06 g/cm3 (20 ºC 760 Torr)
1.5600 (estimate)
storage temp. 
6.12, 12.24(at 25℃)
Soluble in water (1:75), alcohol (1:10), chloroform (1:1), ether (1:30), and DMSO.
Air & Light Sensitive
CAS Datenbank
57-47-6(CAS DataBase Reference)
EPA chemische Informationen
Physostigmine (57-47-6)
  • Risiko- und Sicherheitserklärung
  • Gefahreninformationscode (GHS)
Kennzeichnung gefährlicher T+
R-Sätze: 26/28
S-Sätze: 23-45-25
RIDADR  UN 1544 6.1/PG 1
WGK Germany  3
RTECS-Nr. TJ2100000
HazardClass  6.1(a)
PackingGroup  II
Giftige Stoffe Daten 57-47-6(Hazardous Substances Data)
Toxizität LD50 orally in mice: 4.5 mg/kg (Lynch, Coon)
Bildanzeige (GHS)
Alarmwort Achtung
Code Gefahrenhinweise Gefahrenklasse Abteilung Alarmwort Symbol P-Code
H300 Lebensgefahr bei Verschlucken. Akute Toxizität oral Kategorie 2 Achtung P264, P270, P301+P310, P321, P330,P405, P501
H330 Lebensgefahr bei Einatmen. Akute Toxizität inhalativ Kategorie 1 Achtung P260, P271, P284, P304+P340, P310,P320, P403+P233, P405, P501
P260 Dampf/Aerosol/Nebel nicht einatmen.
P284 Atemschutz tragen.
P320 Besondere Behandlung dringend erforderlich
P330 Mund ausspülen.
P304+P340 BEI EINATMEN: Die Person an die frische Luft bringen und für ungehinderte Atmung sorgen.
P405 Unter Verschluss aufbewahren.
P403+P233 An einem gut belüfteten Ort aufbewahren. Behälter dicht verschlossen halten.

Eserin Chemische Eigenschaften,Einsatz,Produktion Methoden

R-Sätze Betriebsanweisung:

R26/28:Sehr giftig beim Einatmen und Verschlucken.

S-Sätze Betriebsanweisung:

S23:Gas/Rauch/Dampf/Aerosol nicht einatmen(geeignete Bezeichnung(en) vom Hersteller anzugeben).
S45:Bei Unfall oder Unwohlsein sofort Arzt zuziehen (wenn möglich, dieses Etikett vorzeigen).
S25:Berührung mit den Augen vermeiden.


The classic AChEI, physostigmine, is an alkaloid obtained from seeds of the Calabar bean (Physostigma venenosum). Its parasympathomimetic effects were recognized long before its structure was elucidated in 1923. In 1929, Stedman found that the mechanism of the parasympathomimetic effects of physostigmine was inhibition of AChE; it inhibits AChE by acting as a substrate and carbamylating the enzyme. Acetylcholinesterase is carbamylated at a slow rate, but physostigmine has exceptionally high affinity (Ki ~ 10-9 M) for the catalytic site of the enzyme. By comparison, the Ks for acetylcholine is on the order of 10-4 M. Thus, physostigmine is classified as a reversible AChEI that carbamylates the enzyme at a slow rate; the carbamylated AChE also is regenerated quite slowly. Because physostigmine is a tertiary amine with a pKa of 8.2 (+BH) rather than a quaternary ammonium salt, it is more lipophilic than many other AChEIs and can diffuse across the blood-brain barrier. The tertiary amine also imparts pH dependence to its ability to inhibit AChE, because its affinity for AChE is greater when the amine is protonated.

Chemische Eigenschaften

Physostigmine is a white crystalline solid. Odorless.

Physikalische Eigenschaften

Appearance: flaky crystal. Solubility: slightly soluble in water; soluble in ethanol, benzene, and fatty oil. Melting point: 102–104 °C. Specific optical rotation: ?120° in benzene and ?76° in chloroform, respectively


Eserine was first discovered as a reversible AChE inhibitor, and it is also a tertiary amine and easily crosses the blood-brain barrier. In 1846, Robert Christison observed that the extract from Calabar bean caused cardiac arrest and death; he personally ate a certain amount of the extract and felt extremely feeble but luckily survived. In 1855, Christison reported that some kind of substances in the Calabar bean possessed strong biological activity.
In 1864, chemists afforded crystal pure extract which was named as eserine. After that, Thomas Richard Fraser and Douglas Argyll Robertson cooperated to employ eserine in experimental ophthalmology, and the results showed that the antagonistic effect of eserine on mydriasis is induced by atropine. In 1875, Ludwig Laqueur declared that eserine could also be employed to depress intraocular pressure and first used as a treatment for glaucoma. In 1925, Edgar Stedman and George Barger determined the structure of eserine, which belongs to a natural product whose structure is characterized with hexahydropyrroloindole. In 1935, Percy Lavon Julian completed the chemical synthesis of its racemate for the first time .


Physostigmine base (Eserine-Base) is used as bulk pharmaceuticals (parasympathomimetic, cholinergic, ophthalmic, anti-Alzheimer). Product Data Sheet


It is a parasympathomimetic, specifically, a reversible cholinesterase inhibitor obtained from the Calabar bean, used to treat glaucoma and delayed gastric emptying.


Eserine Sulfate (Ciba Vision, US Ophthalmics).

Allgemeine Beschreibung

White, odorless, microcrystalline powder. Used as a cholinergic (anticholinesterase) agent and as a veterinary medication.

Allgemeine Beschreibung

Physostigmine is an alkaloidobtained from the dried ripe seed of Physostigma venenosum.It occurs as a white, odorless, microcrystalline powderthat is slightly soluble in water and freely soluble inalcohol, chloroform, and the fixed oils. The alkaloid, asthe free base, is quite sensitive to heat, light, moisture,and bases, undergoing rapid decomposition. In solution,it is hydrolyzed to methyl carbamic acid and eseroline,neither of which inhibits AChE. Eseroline is oxidized toa red compound, rubreserine,and then further decomposedto eserine blue and eserine brown. Addition of sulfiteor ascorbic acid prevents oxidation of the phenol, eseroline,to rubreserine. Hydrolysis does take place,however, and the physostigmine is inactivated. Solutionsare most stable at pH 6 and should never be sterilizedby heat.
Physostigmine is a relatively poor carbamylating agentof AChE and is often considered a reversible inhibitor ofthe enzyme. Its cholinesterase-inhibiting properties varywith the pH of the medium . The conjugateacid of physostigmine has a pKa of about 8, and as the pHof the solution is lowered, more is present in the protonatedform. Inhibition of cholinesterase is greater in acidmedia, suggesting that the protonated form makes a contributionto the inhibitory activity well as its carbamylationof the enzyme.

Health Hazard

Super toxic. Probable oral lethal dose is less than 5 mg/kg for a 70 kg (150 lb.) person. Material is a cholinesterase inhibitor. Effects of exposure may involve the respiratory, gastrointestinal, cardiovascular and central nervous systems. Death occurs due to respiratory paralysis or impaired cardiac function. Time to death may vary from 5 minutes to 24 hours, in severely poisoned patients, depending on factors such as the dose and route. Persons with asthma and/or persons that require drugs containing choline esters are at risk.


PHYSOSTIGMINE is a slight fire hazard. When heated to decomposition PHYSOSTIGMINE emits toxic fumes of nitrogen oxides. Keep from light and heat.


Eserine was first discovered as one of AChE inhibitors. AChE inhibitor is the same as ACh, which can combine with cholinesterase, while AChE inhibitor will combine more tightly with cholinesterase, which leads to slow hydrolysis, inactive enzyme, cumulative ACh, and emergent biological activities . Although eserine does not directly activate M and N receptor, it can cross the central nervous system and strongly militate the central and peripheral nervous systems .
When locally using eserine in the eyes, the effect is similar to pilocarpine but more powerful and durable. It can activate AChR of iridis sphincter, representing that the pupil is narrowed and the intraocular pressure is depressed, which is more obvious when being used to treat glaucoma patients. When being absorbed, the effect of eserine is similar to neostigmine, which is called as M- and N-like effects, representing that smooth muscle is activated strongly. After crossing the central nervous system, eserine can inhibit the activities induced by AChE, and it is presented as “activate previously, inhibit later.” It is noted that the effect of eserine is dependent on the status of the central nervous system .

Clinical Use

Physostigmine was used first as a topical application inthe treatment of glaucoma. Its lipid solubility properties permitadequate absorption from ointment bases. It is used systemicallyas an antidote for atropine poisoning and otheranticholinergic drugs by increasing the duration of actionof ACh at cholinergic sites through inhibition of AChE.Physostigmine, along with other cholinomimetic drugs actingin the CNS, has been studied for use in the treatment ofAlzheimer disease. Cholinomimetics that are currentlyused or which have been recently evaluated in the treatmentof Alzheimer disease include donepezil, galantamine, metrifonate,rivastigmine, and tacrine. It is anticipated that thislist will continue to grow as the etiology of this disease becomesbetter understood.


A human poison by an unspecified route. Poison experimentally by ingestion, subcutaneous, intramuscular, intravenous, and intraperitoneal routes. Human systemic effects by ingestion: nausea, dyspnea, coma, blood pressure elevation, flaccid paralysis without anesthesia, muscle weakness. Normally administered by injection. Poisoning can occur as a result of a mistake in dosage or due to hypersensitivity of the patient withm 5 to 25 minutes after administration. Death usually results from respiratory paralysis. Experimental reproductive effects. Combustible when exposed to heat or flame. When heated to decomposition it emits toxic fumes of NOx. See also CARBAMATES.

mögliche Exposition

Physostigmine, an alkaloid, originally derived from the calabar bean (Physostigma venenosum) isa potent and reversible inhibitor of cholinesterase. Material is used as a cholinergic (anticholinesterase) agent and as a veterinary medication. Although listed as a carbamate pesticide, physostigmine is not registered for use as an agricultural chemical in the United States.

Veterinary Drugs and Treatments

Physostigmine has been used for the adjunctive treatment of ivermectin toxicity in dogs, as a provocative agent for the diagnosis of narcolepsy in dogs and horses, and as a treatment for anticholinergic toxicity. Because of the potential for serious adverse effects, use of physostigmine as an antidote is generally reserved for very serious toxicity affecting the CNS. Otherwise, safer alternatives such as neostigmine or pyridostigmine are preferred.
While physostigmine has been used to antagonize the CNS depressant effects of benzodiazepines in humans, it should not be used for this purpose because of the potential toxicity and nonspecific action of physostigmine.


Physostigmine is the tertiary amine that are rapidly absorbed from the gastrointestinal tract, as are tacrine, donepezil, and galanthamine, whereas quaternary ammonium compounds are poorly absorbed after oral administration. Nevertheless, quaternary ammonium compounds like neostigmine and pyridostigmine are orally active if larger doses are employed. Only the quaternary ammonium inhibitors do not readily enter the CNS. Because of their high lipid solubility and low molecular weight, most of the organophosphates are absorbed by all routes of administration; even percutaneous exposure can result in the absorption of sufficient drug to permit the accumulation of toxic levels of these compounds.


UN2811 Toxic solids, organic, n.o.s., Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required. UN1544 Alkaloids, solid, n.o.s. or Alkaloid salts, solid, n.o.s. poisonous, Hazard Class: 6.1; Labels: 6.1-Poisonous materials, Technical Name Required.

läuterung methode

Eserine crystallises from Et2O or *C6H6 and forms an unstable low melting form m 86-87o [Harley-Mason & Jackson J Chem Soc 3651 1954, Wijnberg & Speckamp Tetrahedron 34 2399 1978]. [Beilstein 23/11 V 401.]


Light and heat.

Waste disposal

It is not appropriate to dispose of expired or waste drugs or waste product such as lab chemicals by flushing them down the toilet or discarding them to the trash. Larger quantities shall carefully take into consideration applicable EPA, and FDA regulations. If possible return the lab chemicals to the manufacturer for proper disposal being careful to properly label and securely package the material. Alternatively, the waste lab chemicals shall be labeled, securely packaged and transported by a state licensed medical waste contractor to dispose by burial in a licensed hazardous or toxic waste landfill or incinerator. In accordance with 40CFR165, follow recommendations for the disposal of pesticides and pesticide containers. Must be disposed properly by following package label directions or by contacting your local or federal environmental control agency, or by contacting your regional EPA office.

Eserin Upstream-Materialien And Downstream Produkte


Downstream Produkte

Eserin Anbieter Lieferant Produzent Hersteller Vertrieb Händler.

Global( 103)Lieferanten
Firmenname Telefon Fax E-Mail Land Produktkatalog Edge Rate
Henan DaKen Chemical CO.,LTD.
+86-371-66670886 China 21032 58
Henan Tianfu Chemical Co.,Ltd.
0371-55170693 CHINA 22607 55
0086-13720134139 CHINA 968 58
Hubei Jusheng Technology Co.,Ltd.
027-59599243 CHINA 28229 58
career henan chemical co
13203830695 0086-371-86658258
0086-371-86658258 CHINA 29865 58
Antai Fine Chemical Technology Co.,Limited
18503026267 CHINA 9664 58
Nanjing Shizhou Biotechnology Co., Ltd
(+86)25-85563444 CHINA 2360 58
Nanjing Shizhou Biotechnology Co., Ltd
(+86)25-85563444 CHINA 2360 58
ShenZhen Ipure Biology import and export company co.,ltd
18071025641 18071025641 CHINA 11336 58
Dideu Industries Group Limited
029-88380327 CHINA 29991 58

57-47-6(Eserin)Verwandte Suche:

  • Cogmine
  • NSC 30782
  • Pyrrolo[2,3-b]indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-, methylcarbamate (ester), (3aS,8aR)- (9CI)
  • Pyrrolo[2,3-b]indol-5-old,1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-,methylcarbamate(ester),(3aS-cis)-
  • Methylcarbamic acid (3aS)-1,2,3,3a,8,8aα-hexahydro-1,3aα,8-trimethylpyrrolo[2,3-b]indol-5-yl ester
  • Methylcarbamic acid (3aS)-1,2,3,3aα,8,8aα-hexahydro-1,3a,8-trimethylpyrrolo[2,3-b]indol-5-yl ester
  • Methylcarbamic acid (3aS)-1,2,3,3aα,8,8aα-hexahydro-1,3aα,8-trimethylpyrrolo[2,3-b]indol-5-yl
  • calabarine
  • Carbamic acid, methyl-, ester with eseroline
  • Cogmine Eserine
  • CS 58525
  • cs58525
  • Erserine
  • Eserolein, methylcarbamate
  • Eserolein, methylcarbamate (ester)
  • eserolein,methylcarbamate(ester)
  • Esromiotin
  • Ezerin
  • Fysostigmin
  • mcv4484
  • methyl-carbamicacid,esterwitheseroline
  • methyl-carbamicaciesterwitheseroline
  • Physostigmine base (Eserine base)
  • Eserine【alkaloid】
  • Pyrrolo[2,3-b]indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-, 5-(N-methylcarbamate), (3aS,8aR)-
  • [(3aR,8bS)-3,4,8b-trimethyl-2,3a-dihydro-1H-pyrrolo[2,3-b]indol-7-yl] N-methylcarbamate
  • N-methylcarbamic acid [(3aR,8bS)-3,4,8b-trimethyl-2,3a-dihydro-1H-pyrrolo[2,3-b]indol-7-yl] ester
  • Eserine,Physostigmine
  • Physostigmine ,98%
  • Synapton
  • (3aS,8aR)-1,3a,8-TriMethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indol-5-yl MethylcarbaMate
  • (3as-cis)-1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethylpyrrolo(2,3-b)indol-5-olmeth
  • (3aS-cis)-1,2,3,3a,8,8a-Hexahydro-1,3a,8-trimethylpyrrolo[2,3-b]indol-5-olmethylcarbamate (ester)
  • 1,2,3,3a,8,8a-Hexahydro-1,3a,8-trimethylpyrrolo-[2,3-b]indol-5-yl methylcarbamate
  • 1,2,3,3abeta,8abeta-Hexahydro-1,3a,8-trimethylpyrrolo[2,3-b]-indol-5-yl methylcarbamate
  • 1,3a,8-Trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indol-5-yl methylcarbamate
  • 3-b)indol-5-ol,1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-pyrrolo(methylcarb
  • Antilirium
  • nih10421
  • Physostol
  • Pyrrolo[2,3-b]indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-, methylcarbamate (ester), (3aS-cis)-
  • Pyrrolo[2,3-b]indol-5-ol, 1,2,3,3a,8,8a-hexahydro-1,3a,8-trimethyl-, methylcarbamate, (3aS-cis)-
  • ylcarbamate(ester)
  • Physostigmine (pharmaceutical grade)
  • Physostigminefree base
  • Physosfigmine
  • Eserine, ≥98.0%
  • 57-47-6
  • C15H21N3O2
  • Acetylcholinesterase inhibitor that crosses the blood-brain barrier and forms a carbamylated enzyme complex with acetyl cholinesterase that degrades slowly.
  • Indole Alkaloids
Copyright 2019 © ChemicalBook. All rights reserved