ChemicalBook
Chinese english Germany Korea

銅 化学構造式
7440-50-8
CAS番号.
7440-50-8
化学名:
别名:
カッパー;コッパー;アリブリナチュラルコッパー;銅;C.I.ピグメントメタル2;スポンジ銅触媒;銅(キューブ),5N5;銅(粉末);銅(粉末),2N5;銅(粒状);銅(片状);銅(切削片状);ラネー銅;銅(金属);銅,板状;銅,電解粉末;銅,粉末;銅,粒状;銅,片状;銅,削状
英語化学名:
Copper
英語别名:
Cu;m3r;m3s;cum3;COPPER;ofhccu;cda101;cda102;cda110;cda122
CBNumber:
CB2165990
化学式:
Cu
分子量:
63.55
MOL File:
7440-50-8.mol

銅 物理性質

融点 :
1083.4 °C(lit.)
沸点 :
2580 °C
比重(密度) :
8.92
闪点 :
-23 °C
貯蔵温度 :
2-8°C
外見 :
wire
色:
Rust-brownish
比重:
8.92
電気抵抗率 (resistivity):
1.673 μΩ-cm, 20°C
水溶解度 :
insoluble
Sensitive :
air sensitive
Merck :
13,2545
暴露限界値:
TLV-TWA 1 mg(Cu)/m3 (dusts and mists) (ACGIH and MSHA); 0.2 mg/m3 (fumes) (ACGIH).
安定性::
Stable. Incompatible with strong acids, active halogen compounds, chlorine, fluorine, iodine, bromine, ammonia. May react explosively with strong oxidizing agents.
InChIKey:
RYGMFSIKBFXOCR-UHFFFAOYSA-N
CAS データベース:
7440-50-8(CAS DataBase Reference)
NISTの化学物質情報:
Copper(7440-50-8)
EPAの化学物質情報:
Copper(7440-50-8)
安全性情報
  • リスクと安全性に関する声明
  • 危険有害性情報のコード(GHS)
主な危険性  F,N,Xi,Xn
Rフレーズ  17-36/38-11-52/53-67-65-62-51/53-48/20-38-53-50/53-50-68/20/21/22-20/21/22
Sフレーズ  5-26-16-61-62-36/37-60-36
RIDADR  UN 3089 4.1/PG 2
WGK Germany  3
RTECS 番号 GL5325000
10
TSCA  Yes
国連危険物分類  4.1
容器等級  III
HSコード  74081100
有毒物質データの 7440-50-8(Hazardous Substances Data)
安衛法 57-2
絵表示(GHS)
注意喚起語 Danger
危険有害性情報
コード 危険有害性情報 危険有害性クラス 区分 注意喚起語 シンボル P コード
H228 可燃性固体 可燃性固体 1
2
危険
警告
P210, P240,P241, P280, P370+P378
H319 強い眼刺激 眼に対する重篤な損傷性/眼刺激 性 2A 警告 P264, P280, P305+P351+P338,P337+P313P
H335 呼吸器への刺激のおそれ 特定標的臓器毒性、単回暴露; 気道刺激性 3 警告
H401 水生生物に毒性 水生環境有害性、急性毒性 2 P273, P501
H410 長期的影響により水生生物に非常に強い毒性 水生環境有害性、慢性毒性 1 警告 P273, P391, P501
H411 長期的影響により水生生物に毒性 水生環境有害性、慢性毒性 2
注意書き
P210 熱/火花/裸火/高温のもののような着火源から遠ざ けること。-禁煙。
P261 粉じん/煙/ガス/ミスト/蒸気/スプレーの吸入を避ける こと。
P273 環境への放出を避けること。
P280 保護手袋/保護衣/保護眼鏡/保護面を着用するこ と。
P304+P340 吸入した場合:空気の新鮮な場所に移し、呼吸しやすい 姿勢で休息させること。
P305+P351+P338 眼に入った場合:水で数分間注意深く洗うこと。次にコ ンタクトレンズを着用していて容易に外せる場合は外す こと。その後も洗浄を続けること。
P405 施錠して保管すること。

銅 価格 もっと(162)

メーカー 製品番号 製品説明 CAS番号 包装 価格 更新時間 購入
富士フイルム和光純薬株式会社(wako) W01SRM29-0050
Copper powder (99%)
7440-50-8 500g ¥15800 2018-12-26 購入
富士フイルム和光純薬株式会社(wako) W01SRM29-0050
Copper powder (99%)
7440-50-8 2kg ¥47500 2018-12-26 購入
関東化学株式会社(KANTO) 07437-31 銅(粒状) >99.5%(G)
Copper, granular >99.5%(G)
7440-50-8 25g ¥1900 2018-12-13 購入
関東化学株式会社(KANTO) 07437-01 銅(粒状) >99.5%(G)
Copper, granular >99.5%(G)
7440-50-8 500g ¥4600 2018-12-13 購入
Sigma-Aldrich Japan 12816 銅 foil, ≥99.8% (complexometric)
Copper foil, ≥99.8% (complexometric)
7440-50-8 250g ¥6900 2018-12-25 購入

銅 化学特性,用途語,生産方法

外観

赤褐色の線状

定義

本品は、粉末の金属銅からなる着色剤である。

溶解性

硝酸及び熱硫酸に溶けるが、塩酸、冷硫酸、水及び有機溶媒にほとんど溶けない。

主な性質

  1. 単体銅は赤い金属結晶で、美しい固有の光沢を有している
  2. 延展性に富み、やわらかく加工しやすい
  3. 電気、熱に対しては銀に次ぐ良導体である
  4. 耐食性に優れている
  5. 多様な合金があり、用途に応じて強度など幅広い特性を有する
  6. 硫化物の存在下黒い皮膜が生じる(表面を硫化着色して装飾に使われる)
  7. 炭酸イオンの存在する湿った環境では〔緑青〕が生じ、安定した耐食被膜となる

用途

合金材料、銅化合物の製造原料。

用途

触媒、粉末冶金、塗料、電刷子

用途

触媒、含油軸受合金、粉末冶金

用途

蒸着材料、銅合金

化粧品の成分用途

着色剤

主な用途

  1. 電気機器(リードフレーム、半導体素子、コネクター、プラグ、スイッチ、スイッチ部材、ソケット、プリント基板、パソコン、携帯電話、ロボット、太陽電池)
  2. 建築(建築用金具、配管、継手、屋根板、電線?ケーブル)
  3. 冷凍空調機器(エアコン用伝熱管、配管、冷凍機用伝熱管)
  4. 輸送機器?部品(自動車ワイヤーハーネス、端子7など電装品、リニアモーターカー、ヘリコプター)
  5. 産業機械(復水器、蒸発器など産業用熱交換部材、モーター)
  6. ガス、石油機器(湯沸器、風呂釜の熱交換部部品、バルブ、コック)
  7. 精密機械(時計、カメラ、光学、理化学、医療用部材)
  8. 船舶(アンカーチェーン、プロペラ、取水管)
  9. 日用品(鍋、釜、食卓用品、装飾品)
  10. その他(ガラス部品)

使用上の注意

不活性ガス封入

化学的特性

Reddish brown metal; face-centered cubic crystal; density 8.92 g/cm3; Mohs hardness 2.5 to 3.0; Brinnel hardness 43 (annealed); electrical resistivity 1.71 microhm-cm at 25°C; Poisson's ratio 0.33; melts at 1,083°C; vaporizes at 2,567°C; insoluble in water; dissolves in nitric acid and hot sulfuric acid; slightly soluble in hydrochloric acid; also soluble in ammonium hydroxide, ammonium carbonate and potassium cyanide solutions.

化学的特性

Copper is a reddish-brown metal which occurs free or in ores, such as malachite, cuprite, and chalcopyrite.

物理的性質

Native copper has a distinctive reddish/brown color. Its first oxidation state (+1) formscompounds with copper ions named “cuprous,” also referred to as “copper(I),” and these ionsare easily oxidized with elements in group 16 (e.g., oxygen and sulfur) and elements in group17 (the halogens).Copper’s second oxidation state (+2) forms cupric compounds, also referred to as copper(II),which are more stable than copper(I) compounds. For example, copper in both oxidationstates can combine with fluorine: for copper(I) or cuprous fluoride, Cu+ + F- → CuF; and forcopper(II) or cupric fluoride, Cu2+ + 2F → CuF2.Copper’s melting point is 1,083°C, its boiling point is 2,567°C, and its density is 8.94g/cm3.

同位体

There are 32 known isotopes of copper, ranging from Cu-52 to Cu-80. Only twoof these 32 isotopes of copper are stable, and together they make up the amount ofnatural copper found in the Earth’s crust in the following proportions: Cu-63 = 69.17%and Cu-65 = 30.83%. All the other isotopes of copper are radioactive and are artificiallyproduced with half-lives ranging from a few nanoseconds to about 61 hours.

名前の由来

Copper’s name comes from the Latin word cuprum or cyprium, which is related to the name “Cyprus,” the island where it was found by the ancient Romans.

天然物の起源

Copper is the 26th most abundant element on Earth, but it is rare to find pure metallicdeposits. It is found in many different types of mineral ores, many of which are close to thesurface and easy to extract. It is found in two types of ores: (1) sulfide ores, such as covellite,chalcopyrite, bornite, chalcocite, and enargite; and (2) oxidized ores, such as tenorite, malachite, azurite, cuprite, chrysocolla, and brochanite.It is found in most countries of the world, but only a few high-grade deposits are costeffective to mine. Examples of some of its ores are cuprite (CuO2), tenorite (CuO), malachite[CuCO3 ? Cu(OH)2], chalcocite (Cu2S), covellite (CuS), bornite (Cu6FeS4), and chalcopyrite,also known as copper pyrite.Copper ores are found worldwide, in Russia, Chile, Canada, Zambia, and Zaire and, in theUnited States, in Arizona, Michigan, Montana, Nevada, New Mexico, Tennessee, and Utah.High-grade ores of 99% pure metal were found in the United States (and other countries), butmany of these native ore deposits have been mined over the past hundred years and are nowexhausted. Even so, many low-grade ores with concentrations of 10% to 80% pure copper stillexist and await a technology that will make them more profitable for exploitation.

特性

Copper, a versatile metal relatively easy to find, has made it useful for humans for manycenturies. It is malleable, ductile, and easily formed into many shapes such as ingots, pipes,wire, rods, tubing, sheets, powder, shot, and coins. Although copper is resistant to weak acids,it will dissolve in strong or hot acids. It resists atmospheric corrosion better than does iron.One reason is that it forms a bluish-green film (called patina) over its surface when exposed tomoist air or seawater. This coating of copper carbonate and copper sulfate provides a protective layer for the underlying metal that makes it ideal for use on boats, roofs, pipes, and coins.The surfaces of some copper church steeples and the Statue of Liberty have now oxidized toform a pleasing patina.One of copper’s most useful characteristics is that it is an excellent conductor of electricityand heat.

来歴

The discovery of copper dates from prehistoric times. It is said to have been mined for more than 5000 years. It is one of man’s most important metals. Copper is reddish colored, takes on a bright metallic luster, and is malleable, ductile, and a good conductor of heat and electricity (second only to silver in electrical conductivity). The electrical industry is one of the greatest users of copper. Copper occasionally occurs native, and is found in many minerals such as cuprite, malachite, azurite, chalcopyrite, and bornite. Large copper ore deposits are found in the U.S., Chile, Zambia, Zaire, Peru, and Canada. The most important copper ores are the sulfides, oxides, and carbonates. From these, copper is obtained by smelting, leaching, and by electrolysis. Its alloys, brass and bronze, long used, are still very important; all American coins are now copper alloys; monel and gun metals also contain copper. The most important compounds are the oxide and the sulfate, blue vitriol; the latter has wide use as an agricultural poison and as an algicide in water purification. Copper compounds such as Fehling’s solution are widely used in analytical chemistry in tests for sugar. High-purity copper (99.999 + %) is readily available commercially. The price of commercial copper has fluctuated widely. The price of copper in December 2001 was about $1.50/kg. Natural copper contains two isotopes. Twenty-six other radioactive isotopes and isomers are known.

使用

Copper-based ingredients are often used as coloring agents in cosmetics. Copper itself is nontoxic, but soluble copper salts, notably copper sulfite, are skin irritants. In the body, copper combines with certain proteins to produce a variety of enzymes, which in turn serve as catalysts for different functions. For example, copper plays a role in the keratinization process. In normal skin, this catalytic action is completed in 8 to 12 hours, however more than three days may be required in cases of copper deficiency. Through such enzymatic activity, copper is involved in melanin production, as decreased pigmentation has been observed in cases of copper deficiency. Such enzyme-based action also links copper to maintaining and repairing the skin’s connective tissues (collagen and elastin), as well as to wound healing.

使用

Copper is a metal that occurs naturally throughout the environment, in rocks, soil, water, and air. Copper is an essential element in plants and animals (including humans), which means it is necessary for us to live. Therefore, plants and animals must absorb some copper from eating, drinking, and breathing.
The use of copper dates back to prehistoric times. The metal, its compounds, and alloys have numerous applications in every sphere of life–making it one of the most important metals. Practically all coinages in the world are made out of copper or its alloys. Its alloys, bronze and brass, date from ancient times. More modern alloys such as monel, gun metals, and berylliumcopper also have wide applications. The metal is an excellent conductor of electricity and heat and is used in electric wiring, switches and electrodes. Other applications are in plumbing, piping, roofing, cooking utensils, construction materials, and electroplated protective coatings. Its compounds, namely the oxides, sulfates, and chlorides, have numerous of commercial applications.
Copper is distributed widely in nature as sulfides, oxides, arsenides, arsenosulfides, and carbonates. It occurs in the minerals cuprite, chalcopyrite, azurite, chalcocite, malachite and bornite. Most copper minerals are sulfides or oxides. Native copper contains the metal in uncombined form.

使用

manufacture of bronzes, brass, other copper alloys, electrical conductors, ammunition, copper salts, works of art.

使用

Copper, being easy to mine and refine, has become a very versatile metal over the course ofcivilization. Early in human history, it was discovered that soft copper could be made harderand stronger when alloyed with other metals. Copper was and still is important to technologyand the development of civilizations. Over the past several thousand years, brass has foundmultiple uses, such as in coins, cooking utensils, and many types of instruments and hardwarethat are resistant to corrosion. Even today, brass is used to make musical instruments andbathroom, kitchen, and marine hardware. The U.S. one-cent penny was originally made ofcopper, but today the penny is made of zinc with a coating of copper. Copper is also an alloymetal used as a substitute for some of the silver in several other U.S. coins.Some common uses are in electrical wiring and components of electronic equipment,roofing, and pipes and plumbing and in the manufacturing of alloys such as brass, bronze,Monel metal, electroplating, jewelry, cooking utensils, insecticides, marine paints, cosmetics,and wood preservatives.Copper is second only to silver as an excellent conductor of electricity. This factor and itsavailability made it essential for the expansion of modern technologies. It was, and still is, adesired metal for wires to carry electricity, but the rapid expansion of modern communicationswould require more copper than could be made economically available. The solution has beento use optical fiberglass transmission cables as a substitute for copper wire. In addition, andeven more important, is the recent explosive growth of wireless transmission as a substitute forcopper wire in the communication industries.

使用

Copper has been known since early times. Itis used to make utensils, electrical conductors,and alloys such as bronze, brass, andother copper alloys.

使用

Copper is a metal necessary for the maintenance of normal erythro- poiesis and the prevention of iron deficiency anemia, iron being essential in hemoglobin synthesis.

定義

Metallic element of atomic number 29, group IB of the periodic table, aw 63.546, valences 1, 2; two stable isotopes.

一般的な説明

Reddish lustrous malleable odorless metallic solid.

空気と水の反応

Solid pieces are very slowly oxidized by air to give a green basic carbonate. Solid pieces become covered by a black oxide when heated in air. Insoluble in water.

反応プロフィール

Copper combines violently with chlorine trifluoride in the presence of carbon [Mellor 2, Supp. 1, 1956]. Is oxidized by sodium peroxide with incandescence [Mellor 2:490-93, 1946-1947]. Forms an unstable acetylide when acetylene is passed over samples that have been heated enough to form an oxide coating. Reacts more rapidly in powdered or granular form. Subject to explosive reaction then mixed in finely divided form with finely divided bromates chlorates and iodates of barium, calcium, magnesium, potassium, sodium, or zinc; these reactions are initiated by heat, percussion, and occasionally light friction [Mellor 2:310, 1946-1947]. A solution of sodium azide in Copper pipe with lead joints formed Copper azide and lead azide, both of these compounds can detonate [Klotz, 1973].

危険性

Copper dust and powder, as well as a few of its compounds, are flammable, or even explosivewhen ignited in contained areas. Many of copper’s compounds are extremely toxic andpoisonous either with skin contact or when inhaled or ingested and should be handled by professionals in controlled environments. Even so, both plants and animals, including humans,require traces of copper for the proper metabolism of their foods.

危険性

Flammable in finely divided form. Gastrointestinal irritant and metal fume fever.

健康ハザード

Occupational workers exposed to copper fumes, dust and mists in work areas develop symptoms of poisoning. These include irritation to the mucous membrane, nasal, and pharyngeal irritation; nasal perforation, eye irritation, metallic or sweet taste, dermatitis; prolonged periods of exposure to high concentrations cause anemia, adverse effects to the lung, liver, and kidney. The exposed worker also suffers from metal fume fever; chills, muscle aches, nausea, fever, dry throat, coughing, weakness, lassitude, irritation of the eyes and the upper respiratory tract, discolored skin and hair, and acute lung damage. Occupational workers exposed to copper dust suffer from gastrointestinal disturbances, headache, vertigo, drowsiness, and hepatomegaly. Vineyard workers chronically exposed to Bordeaux mixture (copper sulfate and lime) exhibit degenerative changes of the lungs and liver. Dermal exposure to copper may cause contact dermatitis in some individuals. Copper is required for collagen formation. Copper defi ciency is associated with atherosclerosis and other cardiovascular conditions. Any kind of imbalance of copper in the body causes health disorders that include, but are not limited to, arthritis, fatigue, adrenal burnout, insomnia, scoliosis, osteoporosis, heart disease, cancer, migraine headaches, seizures, gum disease, tooth decay, skin and hair problems, and uterine fi broids, endometriosis (in females). Copper defi ciency is associated with aneurysms, gout, anemia, and osteoporosis. Exposures to copper in the form of dusts and mists cause irritation to the eyes, respiratory system, mucous membrane, nasal, pharyngeal irritation cough, dyspnea (breathing diffi culty), and wheezing. Prolonged exposures are known to cause nasal perforation. Copper has caused anemia and damage to the lung, liver, and kidney in experimental laboratory animals. Reports have indicated that copper dusts and fumes are potential occupational carcinogens.

健康ハザード

The toxicity of metallic copper is very low.However, inhalation of its dusts, fumes, ormists or its salts can cause adverse healtheffects. Inhalation causes irritation of theeyes and mucous membranes, nasal perforation,cough, dry throat, muscle ache, chills,and metal fever. Skin contact can result indermatitis. Many copper(II) salts are toxic.

农业用途

Copper (Cu) is a transition element, belonging to Group 11 (formerly Group IA) of the Periodic Table. It is an important non-ferrous metal and a micronutrient with two distinct functions - to serve as a plant nutrient by being an activator or by being a part of certain enzymes like tyrosinase, lactase, ascorbic acid oxidase, cytochrome oxidase, etc., and secondly to play a role in many electron transfer processes. adsorbed
Copper is a component of several enzyme complexes that influence carbohydrate and nitrogen metabolism in plants. Its other function is to neutralize harmful soil conditions. This is done by adding copper sulphate to the soil to maximize the crop yield. The addition of large quantities of copper in certain peat soils in Kerala (India) was found to precipitate or inactivate some toxins present in the soil and neutralize the harmful conditions. About 70% of copper in a plant is found in chlorophyll and plays an important metabolic function.
Plants absorb copper through leaves as cupric ions (Cu2+)i n the form of a complex, such as EDTA. In soils, copper is found mostly in the cupric (Cu2+) form, adsorbed by clay minerals as well as organic complexes to an extent of 2 to 100ppm. The content of soil organic matter, pH and other metallic ions such as iron, manganese or aluminum influence the availability of copper in the soil. The amount of exchangeable copper decreases as the pH increases. Enhancing the concentration of aluminum beyond 0.1 ppm in soil solutions is found to decrease copper uptake in wheat plants. The ratio of copper to other metallic ions in the rooting medium is more important for plant growth than the absolute concentration of copper.
The retention of copper in soil increases in proportion to the organic matter content. Depending on their stability, copper-humus complexes make copper available to plants. The copper content in soil ranges from 5 to 60mg per kg, although both lower and higher values are not uncommon. The average amount of copper in soils is about 9 to 10mg per kg. The most familiar copper mineral in soils, chalcopyrite (CuFeS2), has copper in the cuprous (Cu+) form. These minerals have very low solubility which increases with pH. The nature of the reactions of copper with various organic matter is still to be fully explored. Soils which are high in organic matter are more prone to copper deficiencies than those with a lesser organic matter content.
The symptoms of copper deficiency vary with crops and are similar to those of potassium deficiency. Copper has low soil mobility and is considered to be deficient when the copper level is below 4 ppm in dry matter. Copper deficiency causes the early aging of chlorophyll and a subsequent fall in crop yield. Lucerne, carrot, onion, barley, oats, wheat and orange are sensitive to copper deficiency. Copper deficiency is common in vegetables, small grains and fruits growing on sands, organic soils or over-limed acidic soils. In corn, the youngest leaves become yellow and stunted. As the deficiency becomes severe, the young leaves turn pale and the older ones die In many vegetable crops, the leaves lack turgor and assume a bluish-green hue. Stem melanosis is a disease occuring in certain beet varieties due to copper deficiency. Organic soils are often copper deficient, as are calcareous soils, the pH of which falls in the range of 8.0to 8.4. A foliar spray of a few kilograms of copper salt per hectare is enough to correct copper deficiency for many years. Copper deficiency increases the incidence of lodging, when simultaneous growth occurs as a response to nitrogen fertilization. Since pollen and ovaries are very sensitive to copper deficiency, flowering and fruiting may be adversely affected or even become absent.
Like most micronutrients, excess copper is toxic to plants. It reduces the iron activity and leads to iron deficiency.
Copper toxicity symptoms include a reduced shoot vigor, a poorly developed and discolored root system and leaf-chlorosis. The toxicity can be seen at places of iron ore deposits and copper smelting. In citrus and lettuce, high copper levels induce iron chlorosis. Copper also significantly inhibits the uptake of zinc, and vice versa.
The most common copper fertilizers include copper sulphate and copper ammonium phosphate. Copper sulphate solution is sprayed on plant leaves. Copper ammonium phosphate is added directly to the soil or sprayed on plants as a suspension in water. Copper salts, produced as frits or chelate, are suitable for soil application. Copper chelate are available for soil as well as for foliar application, in view of the slow release of copper to plants and prevention of copper ions getting converted into insoluble compounds in the soil.

工業用途

The most important characteristics of copperimmersion coatings are their high electricalconductivity, good lubrication properties, andunique appearance. In addition to steel, they canbe applied to brass and aluminum and to printedcircuit boards.
Because of their conductivity, copper immersioncoatings have proved particularly usefulfor printed circuits. They are not especiallynoted for their decorative appeal, but can beused in applications where a particular appearanceis required, e.g., inexpensive, decorativehardware such as casket parts. Because of theirgood lubrication properties they can also beused on steel wire in die-forming operations.

安全性プロファイル

Toxic by inhalation. Questionable carcinogen with experimental tumorigenic data. Experimental teratogenic and reproductive effects. Human systemic effects by ingestion: nausea and vomiting. See also COPPER COMPOUNDS. Liquid copper explodes on contact with water. Potentially explosive reaction with acetylenic compounds, 3-bromopropyne, ethylene oxide, lead azide, and ammonium nitrate. Iptes on contact with chlorine, chlorine trifluoride, fluorine (above 121℃), and hydrazinium nitrate (above 70'). Reacts violently with C2H2, bromates, chlorates, iodates, (Cl2 + OF2), dimethyl sulfoxide + trichloroacetic acid, ethylene oxide, H202, hydrazine mononitrate, hydrazoic acid, H2S + air, Pb(N3)2, K2O2, NaN3, Na2O2, sulfuric acid. Incandescent reaction with potassium dioxide. Incompatible with 1 -bromo-2 propyne.

職業ばく露

Exposure to fume may occur in copper and brass plants; and during the welding of copper alloys; Metallic copper is an excellent conductor of electricity and is widely used in the electrical industry in all gauges of wire for circuitry, coil, and armature windings; high conductivity tubes; commutator bars, etc. It is made into castings, sheets, rods, tubing, and wire and is used in water and gas piping; roofing materials; cooking utensils; chemical and pharmaceutical equipment and coinage. Copper forms many important alloys: Be-Cu alloy, brass, bronze; gunmetal, bell metal; German silver; aluminum bronze, silicon bronze; phosphor bronze; and manganese bronze. Copper compounds are used as insecticides, algicides, molluscicides, plant fungicides, mordants, pigments, catalysts; as a copper supplement for pastures; and in the manufacture of powdered bronze paint and percussion caps. They are also utilized in analytical reagents, in paints for ships’ bottoms; in electroplating; and in the solvent for cellulose in rayon manufacture.

輸送方法

UN3089 Metal powders, flammable, n.o.s., Hazard Class: 4.1; Labels: 4.1-Flammable solid. Copper, elemental is not specifically cited in DOT’s PerformanceOriented Packaging Standards.

不和合性

Copper dust, fume, and mists form shock-sensitive compounds with acetylene gas, acetylenic compounds, azides, and ethylene oxides. Incompatible with acids, chemically active metals, such as potassium; sodium, magnesium, zinc, zirconium, strong bases. Violent reaction, possibly explosive, if finely divided material come in contact with strong oxidizers

廃棄物の処理

Copper-containing wastes can be concentrated through the use of ion exchange, reverse osmosis, or evaporators to the point where copper can be electrolytically removed and sent to a reclaiming firm. If recovery is not feasible, the copper can be precipitated through the use of caustics and the sludge deposited in a chemical waste landfill. Copper-containing soluble wastes can be concentrated through the use of ion exchange, reverse osmosis, or evaporators to the point where copper can be electrolytically removed and sent to a reclaiming firm. If recovery is not feasible, the copper can be precipitated through the use of caustics and the sludge deposited in a chemical waste landfill

銅 上流と下流の製品情報

原材料

準備製品


銅 生産企業

Global( 267)Suppliers
名前 電話番号 ファックス番号 電子メール 国籍 製品カタログ 優位度
Shenzhen Sendi Biotechnology Co.Ltd.
0755-23311925 18102838259
0755-23311925 Abel@chembj.com CHINA 3194 55
Mainchem Co., Ltd.
+86-0592-6210733
+86-0592-6210733 sales@mainchem.com CHINA 32447 55
Hefei TNJ Chemical Industry Co.,Ltd.
86-0551-65418684 18949823763
86-0551-65418684 info@tnjchem.com China 1861 55
career henan chemical co
+86-371-86658258
sales@coreychem.com CHINA 30002 58
Chemwill Asia Co.,Ltd.
86-21-51086038
86-21-51861608 chemwill_asia@126.com;sales@chemwill.com;chemwill@hotmail.com;chemwill@gmail.com CHINA 23976 58
Hubei Jusheng Technology Co.,Ltd.
86-18871470254
027-59599243 sales@jushengtech.com CHINA 28236 58
Xiamen AmoyChem Co., Ltd
+86 592-605 1114
sales@amoychem.com CHINA 6372 58
BOC Sciences
1-631-619-7922
1-631-614-7828 inquiry@bocsci.com United States 20115 58
Sinopharm Chemical Reagent Co,Ltd. 86-21-63210123
86-21-63290778 86-21-63218885 sj_scrc@sinopharm.com China 9847 79
Shanghai bike new material technology co., LTD 17317635738
021-34790236 17317635738@163.com China 285 58

7440-50-8(銅)キーワード:


  • 7440-50-8
  • Copper gauze, Woven from 0.056mm (0.0022 in.) dia. wire
  • Copper, Solid
  • Copper gauze, Woven from 0.23mm (0.009 in.) dia. wire
  • Copper sputtering target, 50.8mm (2.0 in.) dia. x 6.35mm (0.250 in.) thick
  • Copper rod, 19mm (0.8 in.) dia.
  • Copper rod, 9.5mm (0.4 in.) dia.
  • Copper standard solution, 1 mg/ml Cu in 2% HNO3
  • Copper plasma standard solution, Cu 10000μg/mL
  • Copper foil, 2.0mm (0.08 in.) thick
  • Copper, Reference Standard Solution, 1000ppm ±1%
  • Copper flake
  • Copper rod, 5mm (0.2 in.) dia.
  • Copper wire, 2.0mm (0.08 in.) dia, Puratronic?
  • Copper rod, 3.18mm (0.125 in.) dia., Random lengths
  • Copper slug, 3.175mm (0.125 in.) dia. x 6.35mm (0.25 in.) length
  • Copper wire, 0.025mm (0.001 in.) dia.
  • Copper foil, 0.25mm (0.01 in.) thick, Hard, Temper: as rolled
  • Copper rod, 2.0mm (0.08 in.) dia.
  • Copper foil, 0.127mm (0.005 in.) thick, Annealed
  • Copper Thinfoil, 0.01mm (0.0003 in.) thick, Not certified pinhole free
  • Copper Thinfoil, 0.015mm (0.0006 in.) thick, Not certified pinhole free
  • Copper, plasma standard solution, Cu 10μg/mL
  • Copper rod, 6.35mm (0.25 in.) dia.
  • Copper foil, metals basis
  • Copper foil, 0.25mm (0.01 in.) thick
  • Copper foil, Alloy 101, Oxygen-Free High Conductivity (OFHC), 0.81mm (0.032 in.) thick
  • Copper foil, 0.127mm (0.005 in.) thick, Annealed, Temper: soft
  • Copper foil, 0.5mm (0.02 in.) thick, Oxygen free
  • Copper foil, 1.0mm (0.04 in.) thick
  • Copper sputtering target, 76.2mm (3.0 in.) dia. x 3.18mm (0.125 in.) thick
  • カッパー
  • コッパー
  • アリブリナチュラルコッパー
  • C.I.ピグメントメタル2
  • スポンジ銅触媒
  • 銅(キューブ),5N5
  • 銅(粉末)
  • 銅(粉末),2N5
  • 銅(粒状)
  • 銅(片状)
  • 銅(切削片状)
  • ラネー銅
  • 銅(金属)
  • 銅,板状
  • 銅,電解粉末
  • 銅,粉末
  • 銅,粒状
  • 銅,片状
  • 銅,削状
  • 銅及びその化合物
  • 熱膨張率測定用高純度銅 CRM5805‐A
  • 銅(キューブ),4N
  • 銅(粉末),3N
  • 還元銅,粒状
  • 還元銅,粒状(スーパー)
  • 還元銅,線状(0.4)
  • 還元銅,線状(0.6)
  • 還元銅,線状(1.0)
  • 銅(板状)(150×45×0.3 MM)
  • 銅(粉末) 200メッシュ
  • 銅(粒状) 5~8メッシュ
  • 銅.板状
  • 銅.粉末
  • 銅.粒状
  • 銅.削状
  • 銅, 粒状
  • 銅, 粉末
  • 銅, 粉末, -75ΜM, 99.9%
  • 還元銅, 線状 (Φ0.4×5MM)
  • 還元銅, 線状 (Φ0.6×5MM)
  • 銅- O.F.H.C.
  • 銅(不純物)
  • 銅, 電解粉末
  • 銅 foil (99%)
  • 銅 powder, spherical (99.9%)
  • 銅 rod (99.999%)
  • 銅 shot (99.9%)
  • 銅 powder (99%)
  • 銅 foil (99.9%)
  • 銅 wire (99.99%)
  • 青銅
Copyright 2017 © ChemicalBook. All rights reserved