ChemicalBook > Product Catalog >Organic Chemistry >Hydrocarbons and derivatives >Acyclic hydrocarbons >Acetylene

Acetylene

Acetylene Suppliers list
Company Name: Mainchem Co., Ltd.
Tel: +86-0592-6210733
Email: sales@mainchem.com
Products Intro: Product Name:Acetylene
CAS:74-86-2
Company Name: JinYan Chemicals(ShangHai) Co.,Ltd.  
Tel: 13817811078,021-50426030
Email: sales@jingyan-chemical.com
Products Intro: CAS:74-86-2
Company Name: Shanghai Hanhong Scientific Co.,Ltd.  
Tel: 021-54306202,021-54308259
Email: info@hanhonggroup.com
Products Intro: Product Name:acetylene
CAS:74-86-2
Remarks:RA01000004
Company Name: Chengdu XiYa Chemical Technology Co., Ltd.  
Tel: 4008-626-111
Email: sale@xiyashiji.com
Products Intro: Product Name:Acetylene
CAS:74-86-2
Purity:99% HPLC Package:25g,100g,500g
Company Name: Richest Group Limited  
Tel: +86 21 5017 5386/3175 7285/86/87/88/89
Email: info@richest-group.com
Products Intro: Product Name:DREW AMEROID AMEROX ACETYLENE 40 LTR
CAS:74-86-2
Acetylene Basic information
Product Name:Acetylene
Synonyms:Acetylen;C2H2;Vinylene;Narcylen;Ethyne;Ethine;ethenylene;Welding Gas
CAS:74-86-2
MF:C2H2
MW:26.04
EINECS:200-816-9
Product Categories:Industrial/Fine Chemicals;Organics
Mol File:74-86-2.mol
Acetylene Structure
Acetylene Chemical Properties
Melting point -88°C
Boiling point -28°C
density 0.91
vapor pressure 3.04 X 104 mmHg (~40 atmospheres) at 16.8 °C
refractive index 1.00051
Fp -18°C
pka25(at 25℃)
OdorOdorless, although garlic-like or ''gassy" odor often detectable because of trace impurities
Water Solubility 0.106 g/100 mL
CAS DataBase Reference74-86-2(CAS DataBase Reference)
NIST Chemistry ReferenceAcetylene(74-86-2)
EPA Substance Registry SystemEthyne(74-86-2)
Safety Information
Hazard Codes F+
Risk Statements 5-6-12
Safety Statements 9-16-33
RIDADR UN 1001
Autoignition Temperature305 °C
HazardClass 2.1
Hazardous Substances Data74-86-2(Hazardous Substances Data)
ToxicityLC in rats: 900000 ppm (Riggs)
MSDS Information
ProviderLanguage
Narcylen English
Acetylene Usage And Synthesis
DescriptionAcetylene (100% purity) is odourless, but commercial purity has a distinctive garlic-like odour and is very soluble in alcohol and almost miscible with ethane. Acetylene is a flammable gas and kept under pressure in gas cylinders. Under certain conditions, acetylene can react with copper, silver, and mercury to form acetylides, compounds which can act as ignition sources. Brasses containing less than 65% copper in the alloy and certain nickel alloys are suitable for acetylene. Acetylene is not compatible with strong oxidisers such as chlorine, bromine pentafluoride, oxygen, oxygen difluoride and nitrogen trifluoride, brass metal, calcium hypochlorite, heavy metals such as copper, silver, mercury, and their salts, bromine, chlorine, iodine, fluorine, sodium hydride, caesium hydride, ozone, perchloric acid, and potassium.
Chemical PropertiesAcetylene (100% purity) is odorless but commercial purity has a distinctive garlic-like odor. It is very soluble in alcohol and almost miscible with ethane. Acetylene is a flammable gas and kept under pressure in gas cylinders. Under certain conditions, acetylene can react with copper, silver, and mercury to form acetylides, compounds that can act as ignition sources. Brasses contain a form acetylides, compounds that can act as ignition sources. Brasses containing less than 65% copper in the alloy and certain nickel alloys are suitable for acetylene. Acetylene is not compatible with strong oxidizers such as chlorine, bromine pentafl uoride, oxygen, oxygen difl uoride, and nitrogen trifl uoride, brass metal, calcium hypochlorite, heavy metals such as copper, silver, mercury, and their salts, bromine, chlorine, iodine, fl uorine, sodium hydride, cesium hydride, ozone, perchloric acid, or potassium.
Chemical PropertiesAcetylene is an extremely flammable, colorless, compressed gas. It has a faint ethereal odor when pure; a garlic-like odor when contaminated
UsesIlluminant, oxyacetylene welding, cutting, and soldering metals, signalling; pptg metals, particularly Cu; manufacture of acetaldehyde, acetic acid; fuel for motor boats.
General DescriptionA colorless gas with a faint garlic-like odor. Easily ignited and burns with a sooty flame. Gas is lighter than air. Flame may flash back to the source of a leak very easily. Under prolonged exposure to fire or heat the containers may rupture violently and rocket.
Air & Water ReactionsHighly flammable. Slightly soluble in water. Reacts with water to form toxic ammonia fumes.
Reactivity ProfileAcetylene reacts with alkali metals, forming Hydrogen gas. Acetylene can react explosively with bromine [Von Schwartz 1918. p.142 ]. Acetylene forms a sensitive acetylide when passed into an aqueous solution of mercuric nitrate, [Mellor 4:933. 1946-47]. An Acetylene torch used to drill through a plow frame, which was filled with hydrogen gas, produced an explosion [NIOSH, June 1998]. Acetylene reacts with silver, copper and lead to form sensitive, explosive salts. Since Acetylene is endothermic and effectively a reducing agent, it's reaction with oxidants can be very violent (examples: calcium hypochlorite, nitric acid, nitrogen oxide, ozone, trifluoromethyl hypofluorite, etc.). Contact of very cold liquefied gas with water may result in vigorous or violent boiling of the product and extremely rapid vaporization, due to the large temperature differences involved. If the water is hot, there is the possibility that a liquid "superheat" explosion may occur. Pressures may build to dangerous levels if liquid gas contacts water in a closed container [Handling Chemicals Safely 1980]. Acetylene and ammonia can form explosive silver salts in contact with Ag. (Renner, Hermann, Gunther Schlamp. "Silver, Silver Compounds, and Silver Alloys." Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH Verlag GmbH & Co. KGaA. 2001.).
Health HazardHeadache, dizziness and loss of consciousness may occur. Death from ``smothering'' may occur if oxygen content of the air is severely reduced by dilution with Acetylene.
Health HazardProlonged periods of exposure to acetylene cause symptoms including headaches, respiratory diffi culty, ringing in ears, shortness of breath, wheezing, dizziness, drowsiness, unconsciousness, nausea, vomiting, and depression of all the senses. The skin of a victim of overexposure may have a blue color. Currently, there are no known adverse health effects associated with chronic exposure to the components of this compressed gas. Lack of suffi cient oxygen may cause serious injury or death. The target organs include the kidneys, CNS, liver, respiratory system, and eyes.
Fire HazardBehavior in Fire: May explode in fire
Safety ProfileMtldly toxic by inhalation. Human systemic effects by inhalation: headache and dyspnea. Narcotic in high concentration. In general industrial practice, acetylene does not constitute a serious toxic hazard. It is a very dangerous fire hazard when exposed to heat, flame, or oxidizers. Moderate explosion hazard when exposed to heat or flame or by spontaneous chemical reaction. At high pressures and moderate temperatures, and in the absence of air, acetylene has been known to decompose explosively. Reacts with copper to form the explosive copper acetylide. Incompatible with brass, copper salts, copper carbide, powdered Co, Hg, Hg salts, K, Ag and Ag salts, RbH, CsH, halogens, HNO3, NaH, oxidants. Acetylene + halide + UV can explode. Molten Kignites in C2H2 and then explodes. C2H2 reacts vigorously with trifluoromethyl hypo fluorite. With O2, C2H2 can detonate very powerfully. See ACETYLIDES. When ignited, it burns with an intensely hot flame; can react vigorously with oxidizing materials. When mixed with O2 in proportions of 40% or more, acetylene acts as a narcotic and has been used in anesthesia. Acetylene O2 in the air to a level that wd not support life. However, the presence of impurities in commercial acetylene may result in the production of symptoms before an asphyxiant concentration is reached. Thus: 10% in air produces a slight intoxication, 20% produces a staggering gait, 30% produces general incoordination, 33% leads to unconsciousness in 7 minutes, up to 80% produces complete anesthesia, increased blood pressure, narcosis, and stimulated respiration. symptoms, and (in hgh concentration) semi-asphyxia and brief loss of consciousness have all been reported. See ARGON for a dmussion of simple asphyxiants. To fight fire, use CO2, water spray, or dry chemical. Stop flow of gas
Potential ExposureAcetylene can be burned in air or oxygen and is used for brazing, welding, cutting, metallizing, hardening, flame scarfing; and local heating in metallurgy. The flame is also used in the glass industry. Chemically, acetylene is used in the manufacture of vinyl chloride, acrylinitrile, synthetic rubber; vinyl acetate; trichloroethylene, acrylate, butyrolactone, 1,4-butanediol, vinyl alkyl ethers, pyrrolidone, and other substances
First aidMove victim to fresh air. Call emergency medical care. Apply artificial respiration if victim is not breathing. If breathing is difficult, give oxygen. Remove and isolate contaminated clothing and shoes. In the case of contact with liquefied gas, thaw frosted parts with lukewarm water. Keep victim warm and quiet. Ensure that medical personnel are aware of the material(s) involved and take precautions to protect themselves. See also NIOSH criteria document cited below. If frostbite has occurred, seek medical attention immediately; do NOT rub the affected areas or flush them with water. In order to prevent further tissue damage, do NOT attempt to remove frozen clothing from frostbitten areas. If frostbite has NOT occurred, immediately and thoroughly wash contaminated skin with soap and water.
storageAcetylene should be kept stored in a cool, dry place in a tightly sealed container, and should only be used in a well-ventilated area. Cylinders should be separated from oxygen and other oxidizers by a minimum of 20 ft or by a barrier of non-combustible material at least 5 ft high, having a fi re resistance rating of at least 30 min. Storage in excess of 2500 cu ft is prohibited in buildings with other occupancies. Cylinders should be stored upright with a valve protection cap in place and fi rmly secured to prevent falling or being knocked over. The cylinders should be protected from physical damage and avoid dragging, rolling, sliding, or dropping the cylinder. During transport, workers should use a suitable hand truck for cylinder movement. Care should be taken to label “No Smoking” or “Open Flames” signs in the storage or use areas. There should be no sources of ignition. All electrical equipment should be explosion-proof in the storage and use areas.
ShippingUN1001 Acetylene, dissolved, Hazard Class: 2.1; Labels: 2.1-Flammable gas. Cylinders must be transported in a secure upright position, in a well-ventilated truck. Protect cylinder and labels from physical damage. The owner of the compressed gas cylinder is the only entity allowed by federal law (49CFR) to transport and refill them. It is a violation of transportation regulations to refill compressed gas cylinders without the express written permission of the owner
Purification MethodsIf very impure, acetylene should be purified by successive passage through spiral wash bottles containing, in this order, saturated aqueous NaHSO4, H2O, 0.2M iodine in aqueous KI (two bottles), sodium thiosulfate solution (two bottles), alkaline sodium hydrosulfite with sodium anthraquinone-2-sulfonate as indicator (two bottles), and 10% aqueous KOH solution (two bottles). The gas is then passed through a Dry-Ice trap and two drying tubes, the first containing CaCl2, and the second, Dehydrite [Mg(ClO4)2] [Conn et al. J Am Chem Soc 61 1868 1939]. Acetone vapour can be removed from acetylene by passage through H2O, then conc H2SO4, or by passage through two gas traps at -65o and -80o, conc H2SO4 and a soda lime tower, a tower of 1-mesh Al2O3 then through H2SO4 [Reichert & Nieuwland Org Synth Coll Vol I 229 1941, Wiley Org Synth Coll Vol III 853 1955, Jones & Whiting Org Synth Coll Vol IV 793 1963]. Sometimes it contains acetone and air. These can be removed by a series of bulb-to-bulb distillations, e.g. a train consisting of a conc H2SO4 trap and a cold EtOH trap (-73o), or passage through H2O and H2SO4, then over KOH and CaCl2. [See Brandsma Preparative Acetylenic Chemistry, 1st Edn Elsevier 1971 p15, for pK, ISBN 0444409475, 2nd Edn Elsevier 1988, ISBN 0444429603, and below for sodium acetylide.] It is also available commercially as 10ppm in helium, and several concentrations in N2 for instrument calibration. [Beilstein 1 IV 939.] Sodium acetylide [1066-26-8] M 48.0, is prepared by dissolving Na (23g) in liquid NH3 (1L) and bubbling acetylene until the blue color is discharged (ca 30minutes) and evaporated to dryness [Saunders Org Synth Coll Vol III 416 1955], and is available commercially as a suspension in xylene/light mineral oil. [See entry in “Metal-organic Compounds”, Chapter 5.]
Flammability and ExplosibilityAcetylene is a highly flammable gas and forms explosive mixtures with air over an unusually wide range of concentrations (2 to 80%). Acetylene can polymerize exothermically, leading to deflagration. With a very high positive free energy of formation, acetylene is thermodynamically unstable and is sensitive to shock and pressure. Its stability is enhanced by the presence of small amounts of other compounds such as methane, and acetylene in cylinders is relatively safe to handle because it is dissolved in acetone. Acetylene fires can be fought with carbon dioxide, dry chemical, and halon extinguishers; firefighting is greatly facilitated by shutting off the gas supply.
IncompatibilitiesThe substance may polymerize due to heating. The substance decomposes on heating and increasing pressure, causing a fire and explosion hazard. The substance is a strong reducing agent and reacts violently with oxidants and with fluorine or chlorine under influence of light, causing fire and explosion hazard. Reacts with copper, silver, and mercury or their salts, forming shock-sensitive compounds (acetylides). The content of lines carrying acetylene must not exceed 63% copper. May form explosive mixture with air. Forms shock-sensitive mixture with copper and copper salts; mercury and mercury salts; and silver and silver salts. Reacts with brass, bromine, cesium hydride, chlorine, cobalt, cuprous acetylize; fluorine, iodine, mercuric nitrate; nitric acid, potassium, rubidium hydride; trifluoromethyl hypofluorite; and sodium hydride.
Waste DisposalReturn refillable compressed gas cylinders to supplier. Consult with environmental regulatory agencies for guidance on acceptable disposal practices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal. Incineration.
Tag:Acetylene(74-86-2) Related Product Information
Nitrogen Hydrogen ETHYLENE PROPANE 5-HEXYN-1-OL 3-TRIMETHYLSILYL-2-PROPYN-1-OL Propargyl alcohol 3-HEXYN-1-OL 4-Pentyn-1-ol 3-PENTYN-1-OL 3-Bromopropyne 3-Butyn-1-ol 1-ETHYNYLCYCLOHEXYLAMINE 1,4-Dichloro-2-butyne 3-Chloropropyne 1,4-Bis(2-hydroxyethoxy)-2-butyne 2-Butyne-1,4-diol 5-CYANO-1-PENTYNE